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Kinetics and dynamics of reactions in liquids 

by M. BEN-NUN and R. D. LEVINE 
The Fritz Haber Research Center for Molecular Dynamics, 

The Hebrew University, Jerusalem 9 1904, Israel 
and The Department of Chemistry and Biochemistry, 

University of California, Los Angeles, 
Los Angeles, CA 90024, USA 

We discuss the control of the kinetics and dynamics of chemical reactions by 
the solvent, from a molecular point of view. The kinetics are discussed using a 
transition state theory (TST) approach, applied to the reactants and their surrounding 
solvent as one supramolecule. The topics discussed include a molecular interpret- 
ation for the changes that take place when one solvent is being replaced by another; 
the use of local against normal vibrational modes and/or joint description, i.e., local 
modes for part of the system and normal modes for the other part; and the effect 
of pressure on the rate in solution. The notion of free volume and volume of 
activation is extended to a more general phase space in which geometrical volumes 
may overlap, the approximations that are inherent to cell theory are examined and 
a molecular interpretation for internal and chemical pressures is suggested. The link 
to the dynamics is provided by an analysis of the breakdown of TST due to 
diffusiodcage control of the rate of the reaction. A unified description which 
interpolates from activation control to diffusion control is presented with a special 
emphasis on the motion within the solvation cage. Results of molecular dynamics 
simulations for both activated and activationless reactions are presented. The very 
detailed computer experiment is interpreted using a reduced mechanical description 
and the separation of time-scales is discussed using an adiabatic separation of 
variables. Spectroscopic methods for probing the different time epochs are 
suggested. The rather short duration typical of the motion within the solvent cage 
is emphasized, and the possibilities that this affords for studying the short-time 
dynamical role of the solvent via experiments in clusters or in glasses are noted. 

1. Introduction 
Chemists influence the rates of chemical reactions in solution by changing the 

properties of the solvent. In this review we discuss the molecular level interpretation 
of the possible changes that can be brought about in this way. We consider also the role 
of the solvent during the entire course of the reaction because our final aim is an 
interpretation not only of the overall reaction rate but also the dynamics of the reaction 
and the ways that the solvent can intervene to modify them. 

Modern chemical physics speaks of control of chemical reactions. Theoretical 
proposals for achieving this control are typically discussed through the application of 
a tailored intense laser pulse. The externally imposed laser field needs to be strong so 
that it can modify the forces that act between the atoms. Equally strong (and, often, 
chekcally more specific) perturbations on the reactants are, however; possible by 
changing the solvent. Indeed, the perturbation by the solvent is strong enough that it 
is useful, as we do below, to think of the solute and the solvent together as one large 
supramolecule. The very specificity of the perturbation does however mean that one 
has to know, in some detail, the nature of the relevant regions of the potential energy 
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216 M. Ben-Nun and R. D. Levine 

surface of the entire system. Since this is often not realistic, chemists have given special 
attention to the reaction coordinate along which the system evolves en route from 
reactants to products. In solution the motion of the reactive system along the reaction 
path is coupled also to the solvent degrees of freedom. If one is willing to view the 
reactive system immersed in a liquid as a supramolecule, this coupling will be additional 
to the coupling between the reaction coordinate and the degrees of freedom of the 
isolated reactants. In this review we will often adopt a gas phase view on chemical 
dynamics in solution. By doing so we can apply, to some extent, the accumulated 
understanding of gas phase reaction dynamics to reactions in solution. 

In the gas phase, the rate of a thermally activated bimolecular chemical reaction is 
given, using transition state theory (TST), by the rate of crossing the barrier to reaction. 
This crossing may no longer be the rate determining step for reactions in solution as 
the liquid may hinder the approach motion of the reactants. The observed net reaction 
rate is then limited by two processes: the diffusion of the two reactants into a mutual 
solvation shell and the barrier crossing event. In this review we centre attention on the 
second process, i.e., the crossing of the chemical barrier to reaction, but we do comment 
on how one could account, in a Rice-Ramsperger-Kassel-Marcus (RRKM) type 
fashion, for the presence of both a solvent barrier and a chemical barrier to reaction. 
We further show how a unified point of view can interpolate between a diffusion limited 
and a chemical barrier limited rate of reaction. On the other hand, it should be 
emphasized that the chemical barrier may well involve the participation of the solvent 
degrees of freedom and is by no means necessarily the same as the barrier to reaction 
in the gas phase. 

As has been often noted, transition state theory can be written in a way that is exact. 
In other words, there does exist a distribution of states known as the distribution of 
reactive reactants such that the flux through the barrier, averaged over this distribution 
is the exact rate of reaction. In this review we use the much more practical, but 
approximate, version of the theory which says that this distribution is the equilibrium 
distribution of states at the bm-er. The actual implementation of this prescription can 
be carried out in one of two ways. The first approach involves thermodynamic properties 
such as free energy, enthalpy, entropy and volume of activation. These are often 
measurable properties and thus experimentalists will often use the thermodynamic 
formulation. The second, statistical mechanics approach is formulated using the 
molecular properties of the system and it is somewhat more dynamically oriented. 
It requires a knowledge of the potential energy of the entire system (i.e., reactants plus 
solvent) in the immediate vicinity of the surface dividing the reactants from the 
products, and it involves the calculation of partition functions. Reconciling these two 
points of view is one objective of the first part of this review. In particular, an attempt 
will be made to give a molecular interpretation to such heuristic thermodynamic 

-properties as internal pressure or free volume. We do so by formulating the transition 
state theory expression in different ways and choosing the one that is most useful for 
our needs. 

The starting point for any subsequent approximation that we will make is the exact 
classical statistical mechanics expression for the transition state rate constant as a ratio 
between two phase space integrals: one at the transition state and one for the reactants. 
The essential point and one that we will repeatedly invoke is that, in classical mechanics, 
a thermal average can be considered as a double average: one over the momentum 
variables and one over the space variables. It follows that one can factor any partition 
function as a product of a momentum integral and a configuration integral. While this 
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Reactions in liquids 217 

is well known in statistical mechanics, it is not often applied in chemical kinetics (with 
the very notable exception of Johnston’s (1966) book). Presumably, the reason is that 
such a factorization has no immediate thermodynamic analog. However, since the 
surface of no return, that defines the transition state, is usually taken to be momentum 
independent, the integral over phase space at the transition state configuration can also 
be factored into an integral over momentum and over position. There is therefore no 
reason not to apply this factorization in chemical kinetics and we shall invoke it, 
repeatedly, below. 

It is the integral over the coordinates, often called the configurational integral, which 
requires the multi-dimensional potential energy surface as an input. Depending on 
the degree of coupling between the different coordinates the calculation of the 
configurational integral will be more or less complicated. In any event one has to 
remember that the very same input is required also for the more familiar route of 
evaluation of the partition function through the energy levels. We shall also show that 
the two configurational integrals that are needed for the rate constant can be expressed 
in terms of the, so called, potential of mean force (PMF) at the transition state and for 
the reactants, respectively. 

The result of the configuration and momentum integrals does not depend on the 
particuIar choice of a coordinate system and one can use different coordinate systems 
at the transition state and for the reactants andor for momenta and positions. Different 
choices of coordinate systems will be shown to result in different expressions for the 
rate constant and in particular we will discuss when one should use local or normal 
coordinates and what approximations are applicable for each-of these choices. Local 
mode properties have been used by Johnston (1966) to express the gas phase transition 
state rate constant. Here we extend this formalism to the liquid phase with the same 
basic motivation. Any rate constant that involves a complicated large molecule will 
require the evaluation of many vibrational amplitudes. When the system evolves along 
the reaction coordinate many of these vibrational amplitudes may hardly change and 
thus cancel identically without ever having to be computed. In solution this may greatly 
simplify the problem.as most of the local (and sometimes even normal) properties will 
involve only the pure solvent degrees of freedom. Since the solvation of any species, 
even ionic, is largely due to the first solvation shell, the assumption that most of these 
local properties will cancel out is not unreasonable. 

When possible connection will be made between the present discussion and other 
dynamical theories, such as the familiar Grote-Hynes expression (1980) for the TST 
rate constant in solution. Different approximations will be examined for the following 
reasons. We wish to see what are the approximations that are needed in order to relate 
the statistical mechanics expression to such thermodynamic properties as free volume 
and internal pressure. Furthermore, we would like to examine the possibility of a 
reduced description of liquid phase dynamics (below we explain in detail why). The 
analysis of the rate constant expression enables us to directly indicate to the reader 
which coordinates are neglected in the reduced description and which are included. 

To be really able to control liquid phase chemical reactions one needs to go beyond 
statistical theories and reveal the complete time history of the system as it evolves along 
the reaction coordinate. The reason why we need to go beyond TST is quite obvious 
if we want to determine the role of the solvent in activating (deactivating) the reactants 
(products), or if we wish to understand (on a molecular level) how the solvent impedes 
the products as they separate. This last phenomenon is known as the traditional cage 
effect (Frank and Rabinowitch 1934, North 1964) and it has been extensively studied 
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218 M .  Ben-Nun and R. D. Levine 

by computer simulations (Whitnell and Wilson 1993). Thus the second part of this 
review will discuss dynamics and in particular a reduced dynamical description. 
Superficially it may look as if there is no need for such a reduced description as the 
available computer power enables us to monitor the time evolution of both the reactive 
system and the solvent molecules at relative ease. The human mind, on the other hand, 
is more limited and the output from the simulations is often too large. Hence, the use 
of a reduced description of the many-body problem is motivated by two different 
reasons: one has to do with the fact that often one is interested in a small subset of the 
system, the reactants, and the properties of the solvent are of no interest, yet much of 
the computation time is spent on calculating the solvent properties. The second reason 
is, the above mentioned, over abundance of data which is often too detailed for our 
needs. We therefore view the molecular dynamics simulations as a very detailed 
experiment that calls for an interpretation. 

The reduced mechanical approach which we discuss below is by no means the only 
way of reducing the complexity of the problem. Another, widely used, description is 
based on modelling the solvent using two terms: one is a dissipative term, proportional 
to the velocity, which mimics the dissipation of momentum of the reactants to the 
solvent degrees of freedom and the second is a random force. The latter describes 
collisions with the solvent that activate (or deactivate) the reactants. (The two terms are 
related by the second fluctuation-dissipation theorem and thus ensure the final 
long-time thermal equilibration of the system.) The distinction between the two terms 
is phenomenological and the resulting Langevin equation, or generalized Langevin 
equation (GLE) for the case when memory effects are incorporated, is but an 
approximation. It is generally agreed that if the potential along the reaction coordinate 
and the magnitude (and shape) of the friction are correctly modelled, trends and 
systematics of an ensemble of full classical molecular dynamics trajectories are 
correctly predicted by an ensemble of stochastic trajectories at a much lower (typically 
two orders of magnitude) computational cost. 

We conclude this introduction (Eco 1994) by listing reviews and collections which 
complement and supplement our discussion. These include Adelman (1983, 1987), 
Agmon and Levine (1994), Berne et aZ. (1988), Burshtein and Kivelson (1991), 
Chandler (1990), Fonesca et al. (1985), Hiinggi et al. (1990), Hanggi and Troe 
(1991), Harris et al. (1988), Hynes (1985a, b), Jortner et al. (1993), Melnikov (1991), 
Nitzan (1988), Robinson et al. (1990), Schroeder and Troe (1987), Truhlar (1990), 
Tucker et al. (1991), Whitnell and Wilson (1993), Wilson (1988a), Zhang and Harris 
(1991). 

2. Prelude: The supramolecular partition function 
The transition state theory expression for the rate constant 

kT Q* 
k(T)  = --exp( - AEfkBT) 

h @  

is well known (Berne et al. 1988, Glasstone et al. 1944, Truhlar 1990). In the classical 
limit this requires the calculation of phase integrals at the TS (Qs) and for the reactants 
(Q) and knowledge of AE, the energy difference between the TS and the reactants. 
It is generally assumed that neither the potential nor the transition state dividing surface 
depend on the momenta so that the classical phase integral can be factorized into a 
product of integrals over momenta and positions. The latter is the configurational 
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Reactions in liquids 219 

integral over the Boltzmann factor of the potential energy 

The purpose of this section is to discuss the approximations available for the 
evaluation of this integral with special reference to the point of view where we consider 
the reactants and the surrounding solvent as one supramolecule. We do however want 
to make contact with the rate of the corresponding gas phase reaction, on the one hand, 
and the properties of the solvent on the other. For this purpose it proves convenient to 
distinguish at least three sets of degrees of freedom that are needed to specify a 
configuration of the supramolecule: those of the isolated (gas phase) reactants, those 
of the solvent and those that specify the relative solute-solvent configuration. The pure 
solvent degrees of freedom will, in general, include both the internal coordinates of the 
solvent molecule and the relative positions of the molecules of the solvent. 

Formally, the configurational integral can always be written as a product of volume 
elements, V,, available to the atoms of the molecule (Mayer and Mayer 1940) 

z= n v,. 
N 

If there were no forces between the atoms, each atom would move independently 
throughout the volume, V, of the container so that V, = V. In a molecule (or in our 
supramolecule), the atoms are not free to move independently and each atom would 
have an effective volume, V,, in which it can move. This idea of an effective volume 
that is available to an atom is closely related to the concept of free volume that is often 
used in cell theory of liquids and crystals (Eyring et al. 1936, Fowler and Guggenhiem 
1939, Hirschfelder et al. 1954, Hill 1987). The technical purpose of this section is to 
review the possible approximations for evaluating the volumes V,. Of course, different 
approximations will be needed for say an atom of the reactants against an atom of a 
monoatomic solvent. The latter is the simplest case and we start from it. 

2.1. The free volume 
Physically the idea of free volume is quite clear. Imagine a simple monoatomic 

solvent and suppose that one atom is designated as being special. We focus our attention 
on this special atom and define the free volume to be that space in which the centre of 
the atom can move and still not collide (on the average) with the neighbouring atoms. 
The extension to a molecular solvent is straightforward. Cell theory gives a more 
rigorous mathematical definition of the free volume (Kirkwood 1950). If we consider 
a one-component, monoatomic, classical system of Nparticles we can divide the volume 
V into an imaginary lattice of N cells A 1, A2 . . . A N  each of volume 6 = VIN. The free 
volume can be shown to be related to the configurational entropy per molecule, S"', 
in a system restrained by a single occupancy of cells 

s(') = N ~ B  In I!+, 

S(')= -kBTIb ,... IA,plnpdr, ... drN, 

wherep is the probability of finding particle 1 in drl at r1 ,2  in dr2 at r2 etc. (Bold letters 
are used throughout the manuscript to designate matrices and/or vectors.) 

The value of the free volume itself may be estimated in different ways. The most 
obvious, but not so informative, procedure is to calculate the ideal free volume, 

& = free volume, 

(4) 
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220 M .  Ben-Nun and R. D. Levine 

i.e. assuming no interactions and point particles, and then subtracting from it the volume 
that is taken by the particles. As a first crude approximation one can use a hard-sphere 
model to approximate this excluded volume (Eyring and Hirschfelder 1937, 
Hirschfelder 1939). A better approximation is given by calculating the distance of 
closest approach at a given temperature using a pair-wise potential to describe the 
interaction between the two colliding particles (Hirschfelder etul. 1937). An even better 
estimation for the free volume is attained by recognizing that the molecule does not 
move freely around its cell since it interacts with all of its nearest neighbours (Fowler 
and Guggenheim 1939). The effective free volume available for the molecule is then 
defined by the equation 

8 f  = I exp I - [+(r) - 4(O)l/kBT 1 dr. ( 5 )  
A 

where .4 is again the volume of the cell, 4(r) is the total interaction of the central atom 
with all of its nearest neighbours when the central atom is at a distance r from its lattice 
site. This total interaction is given by a single pair-wise interaction times the number 
of nearest neighbours smeared on an area of a ring on the sphere of the cell. To simplify 
the problem the cell may be assumed to be spherical and the nearest neighbours are 
treated as uniformly distributed on this spherical sphere. 

This last definition of the classical free volume is nothing but a mean field 
approximation for each particle that is confined to move in a certain cell under the 
influence of an averaged potential that is induced by the neighbouring atoms. I t  is also 
a continuous geometrical theory in that the integrals are over true geometrical cells that 
cannot overlap. In the exact derivation of the transition state theory expression for the 
rate constant in solution we would use a more general definition for the free or effective 
volume. It will involve integrals over cells in  a phase space that is not necessarily 
geometrical so that different cells may overlap. The reason why we need to appeal for 
this more general definition is clear if we note that if we assume that the central molecule 
interacts with its neighbouring atoms via a harmonic potential the integral used for the 
estimation of the free volume, equation (3, reduces to the configurational part of 
the classical three-dimensional vibrational partition function. The resulting vibrational 
amplitude is local in the sense that it is confined to a region in space. This will no longer 
be true if the integrals involve some normal and not local modes. 

2.2. Local coordinates in solution 
The rate constant, equation (l), is expressed as a ratio of partition functions. These 

may have many atoms or groups of atoms whose free volume is essentially the same 
at the reactants and in the transition state configuration. The contribution of such terms 
will cancel and this greatly reduces the complexity of the calculation of the rate. The 
use of local coordinates serves to simplify the identification of those contributions that 
will cancel. 

The form of the partition function that we seek should depend on local properties 
that are determined to a large extent by the bonds in the vicinity of each atom. The 
derivation does not involve any approximations beyond those assumed in the usual 
derivations, i.e. anharmonicity and coupling between vibration and rotation are 
neglected. 

The formal partitioning of the configurational integral to a product of volume 
elements, is our starting point and we follow the derivation of Johnston (Herschbach 
et al. 1959, Johnston 1966). In our large molecule with N atoms (N  typically being a 
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Reactions in liquids 22 1 

very large number as it includes all the solvent atoms) the first atom may be regarded 
as free to move around the whole volume with the other atoms keeping their distances 
rigidly with respect to it (Mayer and Mayer 1940). The evaluation of the configuration 
integral is thereby reduced to evaluating the effective volume terms for each atom in 
terms of the potential energy parameters and bond lengths and angles that relate each 
atom to its neighbours in the molecule. To show how this is done we first evaluate the 
classical partition function in the more familiar way. The configuration of the molecule 
is then expressed in terms of the centre of mass coordinates, the Eulerian angles that 
specify the orientation of the principal axes of inertia with respect to the whole molecule 
and the normal vibrational coordinates (Mayer and Mayer 1940, Wilson et al. 1955). 
If we assume that the rotations and vibrations are not coupled and neglect anharmonic 
vibrational terms the molecular energy is separable and the result for the classical 
partition function has the well known form 

In equation (6) V is the volume of the container, M is the molecular mass, i.e. the sum 
of solute and solvent masses, I I I is the determinant of the moment of inertia tensor and 
vi is the ith normal mode vibrational frequency. We now compare this expression to 
the one written in terms of the de Brogie wavelength of each particle 

An = h/(2nrn,k~T)'". (7) 
The form for the partition function in terms of the configuration integral is derived by 
integrating only over the momentum of each particle in the system 

N 

Qclass = z n A ,  '. (8) 
a =  I 

By comparing (6) and (S), the configurational integral, Z, is given by 

kBT 
(9) 

N 3N-6 

z= ~ 8 ~ 2 ( 2 ~ k ~ J " h 2 ) -  1/2(3N-66) 3/2 I 112 I I  nm? iIJ G' 
d l =  I 

This last result expresses the configurational integral in terms of the normal modes of 
the system. As the goal is to write it in terms of local properties, we make use of the 
known relation between the product of the eigenvalues of the normal modes and 
the determinants of the (3N - 6) X ( 3 N -  6) F and G matrices (Wilson et al. 1955). 
(These are the non-diagonal matrices that appear in the expression for the vibrational 
energy written in terms of internal coordinates. The F matrix is a force constants matrix 
and G is a mass matrix.) 

3N-6 

IFllGI = n A, (10) 
i = l  

where li = ( 2 n ~ ~ ) ~ .  Using this relation and rearranging terms the final result can be 
written in terms of a geometrical factor, J,  times a function of the determinant of the 
force constants matrix times a function of the temperature 

z= J/(2nkBT/h2)1'2(3N-6)IFI -I/'. (1 1) 
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222 M. Ben-Nun and R. D. Levine 

can be shown to depend only on the geometry of the system and it can be written as 
a product of factors, one for each atom (Johnston 1966). 

In our formulation of the transition state rate constant we use equation (1  1) with 
a single modification. Because the partition function for the transition state does not 
include an integration over the reaction coordinate we multiply and divide by the 
frequency of crossing of the transition state, v*. We note that in solution, this frequency 
need not be identical to the one in the gas phase as the crossing of the transition state 
will, in general, involve also the motion of the solvent. Thus the general expression for 
the transition state rate constant in solution is written in terms of ratios between different 
determinants times a frequency factor times an exponential energy factor 

Here the superscript $(r) refers to the transition state (reactants), and AE is the difference 
in energy between the activated complex and the reactants in solution. 

Equation (13) is exact within the limitations of transition state theory and the two 
approximations made in its derivation: a local quadratic approximation for the potential 
and the neglect of coupling between rotation and vibration. 

We now proceed in the analysis of the expression for the transition state rate 
constant. We wish to note and emphasize that the analysis is performed simultaneously 
on both the F and G matrices. This enables us to identify eigenvalues of the product 
of these matrices with normal modes of vibration. The desired final forms would either 
relate the microscopic properties of the rate constant (that are derived in terms of the 
form of a molecular Hamiltonian), or to thermodynamic quantities, or be written as a 
gas phase rate constant times a liquid phase correction factor. Depending on the solvent, 
and on the potential along the reaction coordinate in the region of the transition state 
and of the reactants this correction term would be of smaller or larger magnitude. 

To enable the reader to follow the formulation in a most convenient way we define 
the following matrices that would often show up in what follows. 

FG=(W A WT B ) a n d A = ( C  s CT K). 

The non-diagonal matrix S correspond to the solute internal modes, K describes the 
solvent-solute relative separation and C is the coupling between these two sets of 
modes. The second non-diagonal matrix, B, represents the pure solvent degrees 
of freedom, and these are coupled to all the other modes via the matrix W. The matrices, 
K, S, B and A are square matrices and in general B would be the largest one as it 
includes all the solvent-solvent internal coordinates. 

In the next sections we examine different possible analytical forms of the rate 
constant. Use will often be made of a mathematical result (Hohn 1973) that enables us 
to write the determinant of a Hermitian matrix (FG in this example), in terms of the 
two square sub-matrices A and B 

A WT 
FG=(W B )7 

~FGI  = IB- W A - ~ W ~ I  = IAJIBII I  - B- IWA- IW~I .  J 
If required one can proceed further and factorize the (square) A and B matrices in a 
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Reactions in liquids 223 

similar way. This general result will enable us to factorize either the FG matrix, or the 
F and G matrices separately, in different forms. Once we factorize the matrices we can 
use local modes for one sub-matrix, A for example, and normal modes for the second, 
the B matrix in this example. The use of local against normal modes is dictated by the 
strength of the coupling in each sub-matrix, i.e. by the ratio between non-diagonal and 
diagonal terms, and by the approximations that we wish to employ. As the coupling in 
our problem involves both kinetic (G matrix) and potential (F matrix) energies the 
choice of basis set may not always be trivial. However, regardless of the complexity 
of the solute and/or of the solvent the F and G matrices can always be written in terms 
of internal coordinates of the solute degrees of freedom, the solvent-solute relative 
separation, the pure solvent coordinates and the coupling between these three 
sub-systems. 

3. The reaction rate in the gas phase and in solution 
To express the rate constant in terms of a gas phase rate constant times a liquid 

correction factor we retain the local mode non-diagonal form of the rate constant, 
equation ( 1  3), and use the mathematical result (15). The resulting expression 

k(T) kgaslkiiq (16) 

is interpreted in the following way. k,,, is the conventional gas phase rate constant 
written in terms of local coordinates, i.e. a gas phase barrier crossing frequency, v,*,,, 
times a ratio between functions of determinants of tensors of inertia and of the FG 
sub-matrix S, defined in (14), times an exponential gas phase Boltzmann factor 

In equation (17) the superscript as before refers to the TS(S) or reactants (r), I,,, is the 
3 X 3 moment of inertia tensor of the isolated solute and S, as defined in (14), includes 
only the solute internal modes. AE,,, is the difference in energy between the TS and 
the reactants in the gas phase, i.e. it does not include the possible effect of differences 
in the solvation of the TS and of the reactants. The liquid phase correction factor of 
equation (16), &iq, is defined by equations (16) and (17). It is not identical to the, so 
called, transmission coefficient of TST (Glasstone et al. 1944) and need not be bounded 
by unity. By its very definition it is expressed as a product of ratios between barrier 
crossing frequencies, geometrical factors, vibrational amplitudes, and an exponential 
solvation energy factor 

The first term on the right-hand side of equation (1  8) is the ratio between the barrier 
crossing frequency in the gas phase to that in the liquid. In the second part’of this review 
we discuss this factor in detail and argue that for a typical activated bimolecular reaction 
in an inert solvent this ratio is close to unity. The reason for this is the large and repulsive 
forces at the activation barrier that are often comparable to chemical force constants 
and are larger by one or two orders of magnitude than the solvent-solute interaction. 
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224 M. Ben-Nun and R. D. Luvine 

Mathematically this results in a liquid phase normal mode of the reaction coordinate 
that at the saddle is very similar to the one in the gas phase, i.e. it is dominated by the 
reactants gas phase potential energy surface. The rest of Kli, can be considered as a ratio 
of two equilibrium constants: one for the reactants between the solution and the gas 
phase, and the other for the transition state. Explicitly, the second and third terms on 
the r.h.s. of equation (1  S), to which we often refer as a geometrical factor, are the ratio 
between the determinants of the moments of inertia tensors in the gas phase and in 
solution at the TS and for the reactants. To a first approximation we may assume that 
these ratios are close to unity. Considering the other many approximations that are 
inherent to TST we do not consider this approximation to be a severe one. The way the 
fourth and fifth term are written is not unique and below we suggest other forms. Here 
we render their physical origin. The fourth term is a ratio of the different solvent-solute 
normal modes of vibration at the transition state and for the reactants, modified by the 
coupling to the pure solute internal coordinates. Similarly, the fifth term describes a 
similar ratio between vibrational amplitudes but this time of the pure solvent internal 
modes that are being modified by the coupling to the solute and to the solvent-solute 
local modes. Finally the exponential factor, AA, accounts for the different solvation 
energies of the TS and of the reactants. In many reactions it is well known that this 
exponential factor governs the order of magnitude of the reaction rate. 

Written in this form of local internal coordinates that are being successively 
factorized, the liquid phase TST rate constant has a simple physical interpretation that 
conforms with the hierarchy of interactions suggested by Adelman (1983). It reflects 
the gradual effect of the solvent on the solute in the following form: first and foremost 
there are the solvent-solute internal modes that in principle may be ordered in terms 
of geometrically successive solvation shells that surround the reactive system (Tarjus 
and Kivelson 1991). The order of these solvation shells may change in the course of 
reaction and so may the nature of interactions. Specifically so if the reaction involves 
an ionic species and/or a change in charge distribution. These solvent-solute modes are 
coupled to the pure gas phase solute modes via both kinetic and potential terms, C. 
Finally, the solvent-solute internal coordinates, K, are succeeded by the pure solvent 
modes, B. These last solvent modes are coupled to each other and to the former two 
hierarchies, i.e. pure solute and solvent-solute modes. 

Pictured in this way the rate constant reflects the route in which energy is being 
consumed andlor dissipated by the reactive system in solution. In any activated 
bimolecular reaction that takes place in solution the energy needed to surmount the 
chemical barrier to reaction is supplied by the solvent degrees of freedom, as 
the reactants have only a thermal energy distribution. Via both kinetic and potential 
coupling this energy first travels from the solvent modes to the solvent-solute modes 
and then finally to the reactive system itself. Using time reversibility one can view the 
dissipation of energy by the products to the solvent in a similar form. Being an averaged 
quantity the rate constant does not hold in it any information about the specific way in 
which the energy is being consumed and/or dissipated. This is a detailed microscopic 
dynamical information and to attain it we go beyond TST in the second part of this 
review and discuss the actual dynamics in more detail. 

Finally, before making any approximations or change of coordinate system that will 
enable us to express the rate constant in terms of effective volumes we note that the 
functions of the determinants of both the solvent-solute internal coordinates and 
the solvent modes that show up in the expression for K1iq, equation (18), can be rewritten 
in the following form 
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Reactions in liquids 225 

If we use this form and rewrite the expression for the rate constant, equation (17), the 
above mentioned hierarchy of interactions in the expression for the rate constant is even 
more explicit 

Thus within the limits of the usual approximations used in the derivation of a TST rate 
constant the rate in solution reflects, in successive order, the bare solute, the solvation 
shells that surround it, and the interactions between the different solvation shells. 

We now examine the different approximations that may be utilized in the analysis 
of this last equation. We start with the ratio between correction factors and in particular 
with the last one that accounts for the shift in the solvent normal modes due to the 
solvent-solute modes and the pure solute modes. At the transition state one may 
reasonably assume that the numerator is roughly unity for the following reason. In the 
region of the transition to reaction the interaction between the solute molecules is 
dominated by the gas phase potential energy surface and it is comparable to chemical 
forces (Ben-Nun and Levine 1992a, b, Charutz and Levine 1993). Thus the inverse of 
these frequencies will be a small number and in addition the coupling of the solvent 
modes to both the solute, and the solvent-solute internal modes will typically be smaller 
by an order of magnitude or even more. For these two reasons one may in certain cases 
neglect the last correction term jn equation (20). (Approximating the denominator to 
be one is motivated mainly by the second reason although even for the reactants the 
attractive interactions will correspond to chemical forces.) 

Although we have just reasoned why one can neglect the correction term to the 
solvent normal modes we may not always wish to do so. In particular we will argue 
below that the neglect of this term corresponds to a neglect of a large part of the internal 
pressure that is induced by the cohesive forces that hold the liquid together. 

The next viable approximation that one may wish to make is to cancel out the ratio 
between the unmodified solvent modes, the B determinants, at the transition state and 
for the reactants. Physically this approximation may even be better justified than the 
previous one as it concerns the unmodified pure solvent-solvent local modes. As one 
recedes from the solute these modes are likely to be less and less modified when the 
system evolves along the reaction coordinate. In practice it is obvious that we will 
consider this approximation only if we have decided upon the former one, i.e., one does 
not simplify the problem by neglecting the unmodified modes and keeping their 
correction terms. 

3.1. A geometric free volume and a phase space effective volume 
Regardless if we choose to neglect any term in the expression for the rate constant, 

or to treat the exact expression, i.e. equation (20), the S, K, and B determinants can 
always be written in terms of three different uncoupled sets of normal modes. This will 
enable us to define a generalized effective volume in a phase space that corresponds 
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226 M .  Ben-Nun and R. D. Levine 

to the three different sets of normal modes and thus relate our formalism to cell theory 
and to the 'classical' geometric free volume. Whereas for the B matrix the use of a 
separate set of normal modes is often the correct procedure, using two disjoint sets for 
the solute and solvent-solute part is often not very instructive. The reason is the 
correction term for these two distinct sets that may be large if the magnitude of the 
non-diagonal terms, C, in the original A matrix is large with respect to the S and K 
terms. Thus depending on the magnitude of the coupling one chooses to work with three 
(S, K and B), or two ( A  and 6) disjoint sets of normal modes. Written in terms of sets 
of normal modes the exact expression for the rate constant is factorized into a product 
of normal modes times a correction factor 

)(I - K - ~ c s - ~ c T ) S J - ~ ~  )(I - B-~WSA-~WT)S I -~ /~  
x )(I - K - ~ c s - ~ c T ) ' I - ~ / ~  )(I - B - ~ w A - ~ w T ) ~ I - ~ "  . (21) 

In equation (21) the A l s  are the normal modes of the reactive system calculated as if 
there is no coupling to the solvent, i.e., the S sub-matrix is decoupled from the other 
matrices, and di and xi, are the solvent-solute, and solvent-solvent normal modes, 
respectively. These normal modes are also calculated as if each subset of coordinates, 
K and B, is isolated from the rest of the system. Equation (21.) is similar to the form 
of the TST rate constant of the Caldeira-Leggett Hamiltonian (Caldiera and Legget 
1983a, b) and to the Grote-Hynes expression for the rate of reaction derived from 
a generalized Langevin equation (Grote and Hynes 1980, Hynes 1985a). The 
Caldeira-Leggett Hamiltonian describes a reactive particle that is linearly coupled to 
a bath of N distinct harmonic oscillators. This Hamiltonian can be shown to be 
analogous to the stochastic GLE equation studied by Hynes et al. (Adelmann 1983, 
Chandler 1986, Pollak 1986a, b, 1987, Talkner and Braun 1988, Zwanzig 1987). In both 
cases the rate is written as a gas phase rate constant times a correction factor that is given 
by a product of normal modes. Equation (21) has a similar form. We have the bare gas 
phase normal modes of the solute that are part of the gas phase rate constant times the 
normal modes of the solvent and of the solvent-solute relative motion (the rest includes 
a gas phase frequency factor and a moment of inertia tensor, see equation (17)). The 
solvent-soIvent and solvent-solute normal modes are further corrected to account for 
their mutual presence (and for the presence of the solute itself). As noted by Grote and 
Hynes (1980), this correction term may be quite large thus indicating that the choice 
of basis set is not optimal and one should back up and treat the solute and solvent-solute 
coordinates as a single basis set in the normal mode analysis. This results in two 
manifolds of normal modes and a single correction term for the solvent modes 

In equation (22) the label 'rest' refers to the solute and solvent-solute internal 
coordinates, i.e., to the original A matrix. The normal modes of the reactive system no 
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Reactions in liquids 227 

longer correspond to that of the bare gas phase reactive potential energy surface and 
depending on the strength of the coupling will include more (or less) of the 
solvent-solute motion in them. 

Once we have closed the cycle and went back to normal mode coordinates, we 
recover the free volume by noting that the different sets of normal modes (i.e., 1, 6 and 
x of equation (21) or q and x of equation (22) are just a product of vibrational partition 
functions with the general form 

The amplitude of the normal mode reflects the effective volume in phase space in 
which each mode is allowed to move. This effective volume is more general than the 
one given by cell theory. The latter results from an averaged mean-field theory and it 
is interpreted as a ‘true’ physical motion of the reactive system in some effective cell 
that is the result of averaging over both the solvent-solvent and solvent-solute 
interactions (Hirschfelder 1939). As a result of this averaging the ‘cell theory’ TST rate 
constant is written as 

1 k ( T )  = kgas (-$ exp( - A;VkBT) 

where 8f is the free volume of the TS molecule ($1 or of the reactants (r) in solution, 
Qgas is the gas phase (i.e., vibration, rotation and internal degrees of freedom) partition 
function of the reactants or the TS, and A2 is, as before, the difference in solvation 
energies between the TS and the reactants. When we compare this expression to our 
original exact expression for the rate constant, equation (20), we see that what cell 
theory does is to average over all local coordinates, except those that are explicit to the 
solute, in such a way that the effect of the solvent-solvent interactions and even more 
that of the direct interaction between the solute and the solvent is described by a single 
configurational integral that results in the free volume. 

There are two main differences between cell theory, equation (24), and the exact 
expression that is written in terms of normal modes, equations (21) or (22). Cell theory 
only considers a single averaged geometrical cell whereas the exact expression 
compromises three types of cells. Depending on the coupling each of these cells may 
have more (or less) of the solute, solvent-solute and pure solvent character. In the exact 
expression use is made of normal modes and thus the space that maintains these cells 
is not a geometric one, like in cell theory, and in the original geometrical space some 
of these phase space cells may substantially overlap each other if they are strongly 
coupled. 

Another formulation that would refate us to free volume is based on the use of a 
valence force approximation (Bjermm 1914, Wilson et aZ. 1955). In this formulation 
the forces considered are those that resist the compression or extension of local bonds 
and those which oppose the bending or torsion of bonds. Forces between atoms that 
are not directly bonded are neglected and the potential energy surface is written as a 
sum of quadratic terms in these coordinates. This may greatly simplify the calculztion 
of the configurational integral, as it will be immediately written as a product of 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



228 M. Ben-Nun and R. D. Levine 

one-dimensional integrals: one integral for each quadratic term in the potential energy. 
Each of these integrals would result in a single vibrational amplitude that corresponds 
to the effective volume of that particular valence bond. Unlike cell theory which uses 
a vector notation and results in a three-dimensional vibrational amplitude, valence bond 
theory results in one-dimensional amplitudes. Some of these amplitudes will 
correspond to stretching bonds yet, they would also compromise bending and torsion 
amplitudes. Furthermore, we note that to actually get a vibrational amplitude from an 
integral over position one needs to multiply, and thus divide, by the corresponding 
momentum partition function. Now, the actual computation of the momentum partition 
functions is done, as before, by using a Cartesian coordinate system and it therefore 
results in a product of de Broglie wavelengths, equation (7). When all these operations 
are performed they account for the Jacobian of the transformation from a diagonal 
Cartesian kinetic energy mass matrix to a generally non-diagonal valence bond kinetic 
energy mass matrix. Although the use of valence bond theory may greatly simplify the 
problem it is not clear how in practice one can construct a reasonable valence bond 
potential for the solvent and solute. One way of reducing the complexity of the problem 
would be to divide the solvent into two parts. The first part is considered to be an integral 
part of the reactive system. A valence bond potential is then composed for the reactive 
system and a few solvent molecules adjacent to it that have a major contribution to the 
solvation of the reactants or of the TS. The effect of the rest of the solvent molecules 
is described in an averaged way using a single mean field potential energy term which, 
in general, would be different at the T S  and for the reactants. 

3.2. The Kramers description 
In the molecular picture that we have so far used, the origin of the difference between 

the reaction rate in the gas phase and in solution is the possibly quite different structure 
of the TS (and also of the reactants) for the two cases. Unless the coupling of the solvent 
to the solute is the same at the barrier and for the separated reactants, the two rates will 
differ and an explicit example is discussed in section 5. The example also brings out 
the participation of the solvent motion in the crossing of the barrier. It is possible to 
approach the problem from a Langevin (or, equivalently, a Fokker-Planck) equation 
point of view (Fleming and Wolynes 1990, Grote and Hynes 1980, Hanggi et al. 1990, 
Kramers 1940) in which case the correction term Kls equation (18), acquires a 
seemingly different meaning. In principle, since one can rewrite the exact dynamics in 
a Langevin form, the correction term can account even for deviation from the 
assumption of no recrossing which is inherent to TST. In practice, the approximations 
which are made in the solution of the Langevin equation are often such that all that is 
really corrected for is the need to redefine the transition state (from what it was in the 
gas phase) due to the coupling of the solvent to the solute. The resulting correction is 
then just the K1iq term, as discussed earlier. This term can deviate considerably from 
unity (and in either direction) even if there is no energetic factor due to preferential 
solvation. It is however a result of the different nature of the T S  in the gas phase and 
in solution (and ditto for the reactants). 

There can be deviations from the transition state assumption that it is the rate of the 
crossing of the activation barrier that is rate determining. The Kramers approach can 
account for these. An alternative approach, and one that is in the spirit of the gas phase 
point of view that we use in this review, is discussed in the next subsection. 
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Reactions in liquids 229 

3.3. Activation control, diffusion control and cage control 
The net rate of an activated bimolecular reaction in solution is a result of at least 

two processes: the diffusion of the reactants into a mutual solvating shell and the actual 
crossing of the activation barrier to reaction. So far, we have assumed that the rate is 
determined by the activated barrier crossing. Here we discuss a possible modification 
that interpolates, in a smooth fashion, between the limit of a diffusion controlled 
reaction and a barrier crossing limiting step, without any assumption about any time 
separability of the two processes. The new parameter that enters into our considerations 
is the rate with which the reactants collide once they have approached to within the 
foothills of the activation barrier and are not separated from one another by one or more 
solvent molecules. In other words, we will distinguish between the rate with which the 
reactants approach one another from the bulk and get into the cage (sometimes known 
as the ‘encounter rate’ North (1964)) which we denote as kdiff, and their collision rate 
inside the cage, which is physically the analogue of the gas phase collision frequency, 
and which will be denoted below as Z. 

It was suggested by Troe (1986) that the reaction rate in solution can be 
expressed as 

Here k,,, is the rate implied by transition state theory for the crossing of the activation 
barrier. For diffusion limited reactions kdiff< k,,, and the opposite is true for direct 
reactions. Equation (25) is in the spirit of the Lindemann-Hinshelwood mechanism 
(Weston and Schwartz 1972) for unimolecular reactions. To see the implicit assumption 
that is involved in deriving (25), it is convenient to rewrite it as 

This shows that the probability of the reactants getting out of their cage (whether into 
the bulk or into products), see figure 1, is independent as to how they got into the cage. 
In other words, the reactants have stayed long enough in the cage to have forgotten the 
entrance through which they came in. As will be emphasized below, the sojourn in the 
cage may be for a finite duration so that one must allow for the possibility that this RRK 
type of assumption will fail. 

From the point of view of the supramolecule, the cage is a barrier as shown in 
figure 1. In a unimolecular reactions of larger molecules, or of ions, one often has more 
than one barrier and one then sometimes speaks of ‘transition state switching’, 
corresponding to which one of the crossings is rate determining (Lifshitz et al. 1991). 

When one cannot define a ‘surface of no return’ through which those trajectories 
which start as the separated reactants and proceed to form products, go only once, we 
can still use the probability branching analysis of Hirschfelder and Wigner (1939), see 
also Miller (1976). This analysis expresses the probability of going from a to b as a sum 
over all possible ‘branches’. The different branches correspond to reactants that have 
survived n oscillations back and forth within the cage. For n = 1 the net reaction 
probability reduces to the TST result whereas in the other extreme limit of n S=- 1 the 
result (25) is recovered. Each branch in the sum corresponds to the following event: 
the reactants have entered the cage and have survived n oscillations in a joint solvation 
shell before its exit towards products. Such a probability is the product of the probability 
of entering a joint solvation shell (this probability is directly related to the solvent barrier 
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Reaction Coordinate 

Figure 1. Sketch of a one-dimensional energy profile for an activated reaction in solution. 
(This plot is the energy along the reaction coordinate for the supramolecule.) The letters 
a, b, and x designate the separated reactants, products and reactants that are confined to 
a single solvation shell, respectively. Note that in principle, a third barrier may exist en 
route from products in a mutual solvation shell to the well separated products. The first 
barrier is that for the separated reactants to cross into a joint solvation shell. There may 
well be such a barrier even if there is a long-range attraction between the isolated reactants 
due to a solvent-separated pair. See section 6 for a specific example. The second barrier 
is the activation barrier to reaction. The height of this barrier will typically depend also 
on the solvent-solute coupling and so, need not be the same as the barrier height in the 
gas phase. The parameters that govern the total rate of reaction are the diffusion rate into 
a mutual solvation shell k d i ~ ,  the collision rate Z of the reactants at the foothills of the 
activation barrier, Le., the rate of crossing of a dividing surface at x, and the actual rate 
of crossing the barrier to reaction kreac, as given by TST. For the example shown, the total 
rate would, to a large extent, be activation controlled. 

crossing rate), the probability that the supramolecule survives n oscillations in the 
mutual solvation shell without recrossing back to the separated reactants or forward to 
the products, times the probability that the supramolecule does cross the chemical 
barrier and forms products (this probability is determined by the rate of crossing the 
chemical barrier to reaction). The resulting expression for the total probability, Pbca ,  
of going from separated reactmts (a) to products (b), 

correctly extrapolates between diffusion limited reactions to the ones governed by the 
chemical barrier to reaction. In equation (27) P,,, and Pbcx are the probabilities of 
crossing the solvent barrier from solvent separated reactants into the cage and that of 
crossing the chemical barrier from the cage and into products, respectively. Pa,, is the 
finite probability of exiting from the cage into the region of solvent separated reactants. 
Inspection of this more general result shows that it correctly reduces to the two known 
limits. For diffusion limited reactions, once the products got into the cage they will, 
with high probability, react or Pb+x + Pa,, so that the probability of going from 
reactants to products is given by the diffusion probability, P b t a  = P,,,. The opposite 
is true when the probability of the caged reactants to go back into separated reactants 
is small so that the is given by the Troe limit, i.e., equation (25). For intermediate 
cases, the complete expression has to be evaluated. This requires one further input 
beyond that required for the limiting form (26). It is convenient to choose that 
input as the rate, 2, of collisions of the reactants inside the cage. In a TS terminology, 
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I I I  I > S I I I I  

1 10 100 
<n> 

Figure 2. The net rate of an activated reaction measured in units of the rate of crossing the 
activation barrier to reaction, as given by equation (28) against the mean number (n), of 
crossings of the cage, plotted on a logarithmic scale. The two lines correspond to activation 
limited (upper line) and diffusion limited (lower line) reactions. The correction to Troe's 
formula, equation (25), is seen to be important only for (n) < 10. 

this is the rate of crossing of a dividing surface at x. At this configuration the reactants 
are within the cage so that they are closer in than the solvent separated reactants. 
On the other hand they are not yet so close as to be within the range of the repulsive 
barrier potential. The Troe limit, equation (25) or (26), corresponds to many collisions 
within this case. The distinction that we are making between the rate of diffusion and 
Z is the same one made in the kinetics literature (North 1964) between the rate of 
encounters and the rate of collisions in solution. The more general case is derived as 
follows. 

The probabilities P,+, and Pa,, correspond to crossing of the same TS, the first 
one in figure 1. Their ratio is therefore Z/kdiff where Z is the rate of crossing of the 
dividing surface at x. It follows that the net reaction rate has the form 

If those reactants that have entered the cage proceed immediately to react, Z = kdiff and 
k = k,,,. This is the strict TS limit. On the other hand, if many collisions take place 
within the cage, Z > kdie and one recovers the Troe limit, equation (26). In terms of the 
mean number, (n), of crossings of the cage, one finds, see figure 2, that deviations from 
the Troe limit, requiring the use of equation (28), are important only for (n) < 10. 
In section 5.7 we shall bring forth evidence from the dynamical studies that this is the 
regime which is typical of not very strongly coupled solvents. A special case of the Troe 
limit is diffusion control, kdiff < k,,,,, when essentially every pair that enters the cage 
will react so that k=kdiff. One should however note that kaff as used here is 
the rate of diffusion of the reactants from the bulk into their mutual cage. As such, it 
is a diffusion under the long-range force that operates between the reactants. In section 
6 we discuss a case (ion-molecule reaction) where this force is quite dominant. 

While the language used is quite different from that employed in the Kramers 
approach, the intent is not dissimilar. One corrects for the fact that the probability to 
find the reactants at the foothills of the activation barrier is modified due to the solvent 
barrier at the entrance to the cage. Further discussion can be found, e.g., in Agmon and 
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232 M. Ben-Nun and R. D. Levine 

Levine (1993) and references therein. The notions of kinetic against thermodynamic 
control are also discussed there. 

3.4. Conclusions 
It is possible to relate the reaction rate in solution and in the gas phase by assuming 

that also in solution it is the crossing of the activation barrier to reaction that is rate 
determining. There are then three differences that contribute. First, the reactive 
frequency in the gas phase and in solution need not be the same as the solvent can 
participate in the barrier crossing. Similarly, the other (perpendicular) frequencies of 
the reactants and of the transition state can aIso be modified due to the interaction with 
the solvent. 

4. The reaction rate in solution 
The TST expression for the reaction rate constant can be examined not only in 

reference to the corresponding expression in the gas phase but also with respect to the 
properties of the reactants and of the solvent. We begin with the latter, with special 
reference to the concept of internal pressure. 

4.1. The effect of pressure - 
Solvent effects on the rate of reactions are often discussed by the use of two terms: 

cohesive forces (or internal pressure) and chemical pressure. The internal pressure 
results from the forces that bind the liquid molecules together. Furthermore, a dissolved 
solute molecule that has a more specific interaction with the liquid is subject to an 
additional pressure that is termed ‘chemical pressure’, even though the more specific 
interaction need not be chemical in nature. For non-polar solvents the chemical pressure 
is not of primary importance and it does not change much upon change of solvent. This 
is not the case for a polar or ionic solute in a polar liquid. Here, the ‘chemical’ 
interactions around the solute cause the neighbouring solvent cavities to contract in a 
process known as electrostriction. Polar solutes in a non-polar solvent are an 
intermediate case. Beyond these are the truly more specific interactions. 

Even before considering the effect of the solvent itself on the reaction, rate constants 
were measured at different external pressures and volumes of activation were obtained 
(Isaacs (1981) and reference therein, Noyes (1961)). In a given solvent both the 
reactants and the TS have a certain volume. The difference between the volume of the 
TS (V*)  and that of the reactants (V‘) is defined as the volume of activation (AVS) that 
accompanies a reaction, and it can be related to the pressure dependence of the rate 
constant (Clark and Wayne 1969, Weston and Schwartz 1972) 

The result (29) is simple and enables one to argue in a manner reminiscent of the use 
of LeChatelier’s principle in equilibrium thermodynamics. For our purpose it must 
however be supplemented by a molecular level interpretation. 

We begin with the pioneering work by Hildebrand (1929), Hildebrand and Wood 
(1933), Hildebrand and Scott (1962) and of Evans and Polanyi (1935, 1937), see also 
Glasstone et al. ( 1  944). We then proceed to suggest a more rigorous result that may 
be interpreted in terms of the molecular properties of the system, i.e., the Hamiltonian. 
Superficially it may look as if our formulation refers to a continuous solvent and, as 
such, does not provide any molecular information. We would however seek to show 
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Reactions in liquids 233 

that it does, and that it does not differ much from the preceding part of this review that 
used partition functions for the formulation of the rate constant. 

The original derivation of Hildebrand was based on the idea of regular solutions 
(Hildebrand and Wood 1993). Regular solutions are composed of symmetrical 
molecules for which the entropy of mixing is the same as for an ideal solution of the 
same composition. As a result and by correctly neglecting PV work the difference in 
free energy between a regular solution and an ideal one is equal to the difference 
in internal energies, AG = AE. Hildebrand next showed that by using the pair (or radial) 
distribution function, g(R), and by considering only the attractive part of the interactions 
the activity coefficient of a solute molecule A cf~) in a solvent S is given by 

V ,  (Vs)  is the solute (solvent) volume, and EM (Ess) are the solute-solute 
(solvent-solvent) interactions. (To get this result Hildebrand has assumed, as we often 
do, that the solvent-solute interactions are given by the geometrical average over the 
individual solvent-solvent and solute-solute interactions, i.e., EAs = (EssE~)I’’.)  
Next, the internal pressure, Pi, that is defined as the change in internal energy of a system 
during a small isothermal volume change was identified as Pi = EXX/VX where X could 
be either A or S. Perceived in this way the internal pressure is related to the molecular 
details of the attractive interactions: the well depth and length parameter, or to the more 
bulk averaged a coefficient of the van der Waals (vdW) equation of state (Hirschfelder 
1939). Using this result the rate for the reaction of molecules~A and B in a solvent S 
can be written as (Glasstone et al. 1944) 

131) 

The constant refers to the rate of reaction at some standard state and 6: is the square 
root of the internal pressure ( X = A , B , $  or S). 

Equation (3 1) calls for some interpretation before we proceed with the molecular 
derivation. As a first approximation one can assume that the chemical interactions with 
the solvent determine the volumes of the reactants and of the transition state, whereas 
the solvent structure affects the internal pressure. We further note that equation (31) 
requires the knowledge of the internal pressure of four different ‘solvents’: the actual 
solvent S and three other ‘hypothetical’ solutions of pure A, B, or TS molecules. To infer 
from this expression on the effect of internal and/or ‘chemical’ pressure on the rate of 
reaction one more assumption is necessary. One assumes that any loosening of bonds 
is accompanied by a lower internal pressure. This leads to the following conclusions: 
the effect of internal pressure on non-polar reactions is the same as that of external 
pressure. Thus the rate of reactions that involve a net loosening of bonds at the TS 
decreases when the solvent internal pressure increases, and the opposite is true for 
bimolecular reactions (Dack 1974). For polar reactions the changes in volume are the 
dominant factor and the effect of internal pressure is minor. Hence, in a polar reaction 
any solvent that produces a more negative volume of activation increases the rate of 
reaction. For polar reactions that take place in a non-polar solvent, the effect of solvent 
internal pressure must still be considered. 

The derivation of Hildebrand is a step forward. It considers the effect of 
solvent-solvent interactions as well as those with the solute and it therefore provides 
us with a tool for predicting relative rates of reactions in different solvents. There is, 
however, one primary flaw and a second minor theoretical ambiguity with equation (30). 

. 
kBTln k ( ~ )  = const + ~ ~ ( 6 ;  - 8;)’ + v,(& - &j2 - v * ( s ~  - a;)*. 
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234 M. Ben-Nun and R. D. Levine 

First, one has to remember that it is ‘exact’ only for regular solutions. Second, the 
distinction between internal against chemical pressure is somewhat ambiguous and the 
neglect of the repulsive interactions is not clear. To better understand and clearly 
distinguish between internal cohesive forces against chemical electrostriction we appeal 
to the ‘hard’ and ‘soft’ part of the dissolution processes. No approximation is made 
about the nature of the solution and as a side benefit the rate constant is again written 
in terms of the molecular Hamiltonian. 

We consider the process of dissolutjon to be composed of two sequential processes: 
first a cavity is formed at a fixed position and then the interactions with the liquid are 
switched on and the fixed position restriction is removed (Eley 1939, 1944, Korosoy 
1937, Uhlig 1937). The energy associated with the forming of the cavity itself is 
positive, one needs to invest energy to push away the solvent molecules. The amount 
of energy required to form the cavity depends on the forces between the liquid atoms 
and on the size of the cavity which is directly related to the size of the solute molecule. 
The second part of the dissolution process, the introduction of interactions lowers the 
energy. If these two processes require energies of similar magnitude the resulting 
enthaIpy, and therefore free energy because AF’V can be neglected, will have a small 
positive or negative value. An exceptional case is water. Here hardly any energy is 
required to build up the cavity, as there are ‘natural’ cavities in the open structure of 
water. This results in a large negative value of the standard enthalpy of solvation of inert 
gases in water. Thus, by separating the solvation processes into two parts the anomalous 
properties of water are revealed in the first step of forming the cavity. 

We now turn to a more detailed quantitative description of the dissolution process 
(Ben-Naim 1974). Let us assume that the solute-solvent pair potential U(Rs, X )  can 
be split into two parts, a repulsive hard-core part UH(R) that depends on the distance 
between the centres of the solute and the solvent R = IRs - XI and an attractive ‘soft’ 
part US(Rs, X) that depends on the location of the solute RS and on the location and 
orientation of the solvent molecule X 

(32) 
For this definition to be valid some hard-core diameter g~ must be associated with the 
solvent-solute interaction so that 

U( Rs, X) = UH(R) + Us( Rs, X). 

and we have further assumed that it does not depend on the relative orientation of the 
potential. (Note that the letter S has a double meaning: as a subscript it refers to the solute 
and as a superscript it stands for soft.) The ‘soft’ part of the potential is defined by the 
difference between the total potential and the hard-core potential and as such it includes 
the potential energy dependence on the orientation of the solvent molecules. The 
hard-core diameter is an effective distance of closest approach that can be estimated 
as the average of the solvent and solute hard-core diameters. This results in a soft 
potential that is attractive for most of the solvent-solute configurations. We now 
introduce two coupling parameters that define an auxiliary potential energy function 

N N 

The first term of the r.h.s. of equation (34) denotes the potential energy associated with 
the configuration of the solvent molecules and the last two parts involve the idea of a 
coupling parameter that changes continuously from zero to one. An uncoupled solute 
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Reactions in liquids 235 

corresponds to the state C1 = 5 2  = 0 and a fully coupled solute particle corresponds to 
(1 = 1 2  = 1. This double coupling process is somewhat more involved than the usual 
coupling of a cavity to the surrounding solvent. We first couple the 'hard' part of the 
potential to the solvent and then proceed and build up the attractive interactions. Using 
equation (34) an auxiliary configurational partition function that depends on both 
coupling parameters is defined and the work of introducing a solute particle into solution 
is written as a sum of three terms 

(35)  p = pH + = ~ B T  ~n (pSnsqs 1. 
The first term on the r.h.s. of equation (35) defines the work associated with creating 
a cavity at a fixed position in the solvent (the size of the cavity is determined by the 
hard-core diameter which we chose in equation (33)). The second term corresponds to 
the work gained by turning on the soft part of the interaction potential and finally the 
last term accounts for the release of the fixed position constraint that we imposed on 
the cavity and. for the internal degrees of freedom of the solute. A; is the 
three-dimensional de Broglie wavelength of the solute particle, qs is the partition 
function of the rotational and internal degrees of freedom of the solute particle and ps  
is an inverse of a volume element which for a single solute particle equals V -  The 
integrated Hellman-Feyman theorem provides an explicit form of the 'hard' pH and 
'soft' ps-chemical potentials. It involves a singlet conditional distribution function for 
a solvent molecule given a fixed solute particle at Rs coupled to the solvent to the extent 
of a variable il at C2 = 0 

3 - 1  

/ or for a variable 1 2  at 11 = 1 

The singlet conditional probability functions are defined by the corresponding 
potentials and probability functions 

where the auxiliary configurational partition function is 
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236 M. Ben-Nun and R. D. Levine 

Equation (35)  with its complementary definitions, equations (36)-(38), provides a 
molecular interpretation of the solvation process and its dependence on the coupling 
process. First, we increase the hard-core interaction C;1 from zero to unity, keeping the 
soft part switched off. Once 51 has attained its final maximal value of unity the process 
of forming the cavity is complete and ('2 is gradually increased from zero to unity. 
It is important to note that this dissolution process is carried out for the full chemical 
potential but for the pseudo-chemical potential, denoted by a bar. f I H  is the work 
needed to form a cavity with a diameter OH at a fixed position. It is thus equivalent to 
the process of introducing a hard-sphere particle with a diameter CJH at a fixed position. 
When the fixed position constraint is removed these two processes are no longer 
equivalent. 

Once the chemical potential is written in a split form, equation (35) ,  other 
thermodynamical properties and in particular the rate constant can be derived. 
If for example the reactants are composed of molecules A and B the TS rate 
constant 

has a simple interpretation. The pre-exponential factor describes the motion of the TS 
and reactants (A  and Bin this specific example) cavities, and their rotational and internal 
degrees of freedom. The exponential energy factor divides the energy difference 
between the solvated TS and the solvated reactants into two terms. The first is the 
difference in energies that are needed for the formation of a cavity for the TS molecule 
and for the reactants. (In this example two distinct cavities are formed for the reactants.) 
The second is the difference in energies due to different soft solvent-solute interactions 
at the TS and in the reactants regions. The energy associated with the first hard part of 
the dissolution process is solely determined by the solvent structure and by the sizes 
of the solvent and of the solute (the hard-core diameter is taken to be the average value, 
or some more complicated function, of the solute and solvent effect hard-core 
diameters) and as such it corresponds to the internal pressure. The chemical pressure 
is described by the second part of the dissolution process in which the solvent-solute 
interactions are switched on. Hence, the use of hard and soft parts in the dissolution 
process enables us to discern the effects of internal and chemical pressures on the rate 
of reaction and to directly relate them to the molecular properties of the Hamiltonian. 
Other things being equal, any reaction that involves an increase in the size of the solute 
en route to the TS, such as the one that occurs in a unimolecular decomposition, would 
favour a low pressure solvent and vice versa for the opposite case. When the interactions 
with the solvent are dominant the difference in hard-core energies between the TS and 
the reactants are relegated compared to the energy gained by turning on the chemical 
interactions with the solvent. Any solvent that would favour the interactions with the 
TS would increase the reaction rate. In section 3.4. similar results were discussed using 
the local properties of the TS and of the reactants. Here these local properties are cast 
in a different manner. We first consider the energy required to form an ideal effective 
solvent-solute cell that is solely determined by the solvent internal properties and by 
the size of the solute (the latter can be either a TS or a reactant molecule). We then 
consider the energy gained by the possible collapse of this cell due to the soft 
interactions with the surrounding solvent molecules. 
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Reactions in liquids 237 

4.2. Steric factor in solution 
Most textbooks that discuss the steric factor in transition state theory usually express 

it in terms of ratios of partition functions. The origin of the steric factor is then quite 
clear and it is attributed to the free rotations of the reactants that are being converted 
to vibrations at the TS (Benson 1960). Textbooks sometimes argue that at low 
temperatures the vibrational partition functions are about unity whereas rotational 
partition functions are assumed to be between 10 to 100. These arguments have been 
shown to be rather poor as they result in a wrong temperature dependence of the 
exponential pre-factor of the reaction rate (Johnston 1966, Levine 1990). The origin of 
this fault is the assumption for the value of the new vibrational partition functions at 
the transition state. Although it is true that most vibrational partition functions can be 
approximated to equal unity at the TS this is no longer true as the new vibrations of 
the TS correspond to very soft bends or internal rotations. As has been demonstrated 
by Johnston (I  966), an analysis of the pre-exponential factor using local bond properties 
is more revealing. Here we discuss the origin of the pre-exponential factor in solution 
using similar arguments. 

The configuration partition function was written in equation (1 1) as a geometrical 
parameter, J,  times a function of the temperature times the determinant of the force 
constant matrix. As mentioned before, the geometrical factor can be written as a product 
of factors, one for each atom (Herschbach et al. 1959) 

N 

J =  n j,. 
a = I  

Using the result that the force constant determinant can always be expressed as 
3 N -  6 

where m2 is a numerical constant, negative for unstable complexes such as the TS, the 
classical rate constant in solution may be written in a form that puts more emphasis on 
local properties 

In equation (42)  I, is the one-dimensional Boltzmann average of the vibrational 
amplitude calculated for each diagonal term in the potential energy 

+ m  

1, = I exp ( - Fsg?/2k~T) dx = (2xk~T/F,,)’”. (43)  

For simple reactions that involve three to four atoms the effort required for calculating 
the rate constant using local properties or partition functions is about the same. But, for 
very complex reactions in liquids the use of local properties is vastly simpler. Put in 
terms of local properties that do not extend over all the collision complex many 
non-essential terms in the denominator and numerator of equation (42) can be assumed 
to cancel almost identically. These terms correspond to local bonds and angles that are 
further away from the reactive site (in a liquid this would actually be the majority of 
the bonds and angles) so that they are hardly affected by the local changes around the 

- - m  
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238 M. Ben-Nun and R. D. Levine 

reactive site. By virtue of these cancellations and by recognizing that at the TS new 
bonds may be formed, the rate constant is written in a simpler form 

V* 
k (T)  = - fl OS n (jl)$exp( - AE/kBT). 

03 that do (j l>’ new 
change 

Other things being equal, the effect of forming new bonds at the TS, or of the softening 
of certain vibrations that are being converted into bending andor internal rotations of 
the TS is easily accounted for. For example, any reaction in a polar solvent that involves 
a delocalization of charge en route to the TS alters the rate constant in two non-consistent 
ways. First and foremost the solvation of the TS would be less favourable than that of 
the reactants, and second the vibrational amplitude or effective volume would increase. 
Reactions that involve the formation of hydrogen bonds with the solvent at the TS would 
also affect the rate constant in two opposite ways: the entropy of the TS would be 
reduced but so will its internal energy, the net effect is likely to be an increase in the 
rate constant. The double effect of catalysis is easily accounted for by equation (44). 
Apart from being able to reduce the activation energy for reaction by binding to the 
reactants the catalyst reduces the initial free translational volume of the reactants. 
As a result the ratio of products of Jacobian factors, at the TS and for the reactants is 
increased by a large amount. For bimolecular reactions this effect may be quite marked. 
The effect of the liquid on atom transfer reactions that do not involve any change in 
charge distribution can be explained in a similar way. An increase in the rate by an order 
of magnitude when going from the gas phase to solution is attributed to the loss of the 
free translational volume, V, of one of the reactants due to the presence of the liquid. 
In the gas phase the small value of the pre-exponential factor is explained by the 
reduction of this free translational volume of the reactants to a smaller volume, RS2Z $, 
of the collision complex. (R’ and Z S  are the distance and vibrational amplitude of the 
new bond that is being formed at the TS.) In solution this is no longer true, as the 
translational volume of the reactants is no longer V. 

5. Beyond TST: Unfolding the dynamical history of the system 
Going beyond transition state theory and elucidating the role of the solvent as the 

system evolves en route from reactant to products is the subject of the second part of 
this review. We shall use a Hamiltonian point of view so as to make contact with earlier 
studies of dynamics in the gas phase. In principle, the Hamiltonian equations of motion 
for the entire supramolecule can always be reduced to fewer Langevin-like equations 
of motion for a subset of coordinates. Such a reduction is particularly useful if one can 
replace the exact frictional terms in such an equation by a practical simple form. 
As we shall repeatedly emphasize, the time regime of interest to us is very short, shorter 
than one might have originally thought. It is indeed only quite recently that experimental 
spectroscopic probing of solvation and of dynamics of dissociation have verified 
that there is this very short time-scale over which the motion is essentially inertial 
(Lu et aZ. 1993, McManis et al. 1991, Neria and Nitzan 1992,1994). One can develop 
approximations for a Langevin like description which are valid in this short time-scale 
and we will indeed sketch how this can be done. However, we consider that a 
Hamiltonian point of view is equally, if not more so, useful on the short time-scale of 
interest. 
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Figure 3. Contour plot of the gas phase interaction potential, V,, (full line) for the collinear 
C1+ Clz exchange reaction. The potential energy surface (dashed lines) Vis of the LEPS 
functional form with a barrier height of 20 Kcal mol - ’. The interaction potential is the part 
of the gas phase Hamiltonian that vanishes when the reactants (or products) are well 
separated, e.g., Vz = V- Vdiatom. The reaction coordinate q is shown as a thick line. 
The two sets of contours are drawn for the same values of the potential energy in order 
to emphasize the very localized nature of Vz. 

5.1. The reaction coordinate 
As in the gas phase, it is convenient to begin by examining the energy profile along 

the reaction coordinate q. Consider first the interaction energy for a typical symmetric 
A + BA atom exchange reaction as shown in figure 3. The potential along the reaction 
coordinate is also shown in the upper panel of figure 4. There are two general features 
characteristic for exchange reactions that we wish to note. One is the relatively short 
range of interaction: there is a range L, where L is typically of the order of 1 A, such 
that at q = t L one is already at the very foothills of the barrier. Thus the gas phase 
interaction region is rather localized. The second important feature is the curvature of 
the potential. We use the curvature, denoted as K(q) and computed as the second 
derivative of the potential along q, as a measure for the frequency of the motion. If the 
motion is bound then its local harmonic frequency is 02(q) = [K(q)/p] where ,u is 
the mass. However, even if the motion is unbound, [ - K(q)/p]”’ locally determines the 
time-scale of the motion. (Of course, in this case the motion is an unstable one.) Hence 
the magnitude of the curvature of the potential (scaled by the appropriate mass factor) 
defines the local time-scale of the motion. At the top of the barrier the magnitude of 
the unbound force constant is similar to that of a bound diatomic molecule, figure 4 
lower panel. Thus the crossing of the barrier is a rapid event, with a typical duration 
of 10-5Ofs. The chemical interactions that operate in the TS region are often stronger 
by an order of magnitude (or even more) than a typical solvent-solute interaction. 
If we use the inverse of the local frequency as a measure for the time-scales of the 
motion, a separation of time-scale is implied by this simple qualitative observation. 

The separation of time-scales between the motion along the reaction coordinate 
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Figure 4. Upper panel: the general features of an energy profile along a reaction coordinate for 
a symmetric atom exchange reaction against the reaction coordinate q. ( L  is the range of 
the potential. Parameters, in both panels, are for the C1+ Clz reaction, see figure 3.) 
The gas phase interaction potential has a short range so that at q = 2 L and L = 2 A one 
is already at the distant foothills of the barrier to reaction, see figure 3. Lower panel: 
the dimensionless local ratio of the reaction coordinate frequency and the solvent-solute 
frequency w, p2(q) = wz(q)/w2, along the reaction coordinate, q. The position of the barrier 
is'indicated. The magnitude of the curvature serves as a measure for the local time-scale 
of the motion. It is the high value of the curvature at the bamer and the low value of w 
in rare gas solvents that results in the solvent inability to interfere with the rapid barrier 
crossing event. 

(in the barrier region) and the solvent-solute (and solvent-solvent) relative motions 
suggests that a small number of solvent-solute modes would suffice for the description 
of short time-scales dynamics. The model Hamiltonian that we discuss below uses a 
single effective solvent-solute mode to model the results of the full molecular dynamics 
simulations. This effective mode is derived from the complete many-body Hamiltonian 
in the next section. 

5.2. Reducing the dimensionality 
In section 2.1. we discussed the use of local coordinates for computing the reaction 

rate in solution. These local coordinates are the starting point in our reduction process. 
Given the many-body Hamiltonian of the supramolecule, we first approximate it using 
the potential along the reaction coordinate to describe the solute, and express all other 
couplings by their local values for a given q. These include all other coordinates of the 
solute (in a manner made familiar by the reaction path Hamiltonian approach in the gas 
phase (Basilevsky and Rybov 1982, Fischer and Ratner 1972, Hofacker 1963, Hofacker 
and Levine 1971, Marcus 1966, Miller 1983)), and, in addition, include the 
solvent-solute and solvent-solvent modes. This may result in a complicated kinetic 
energy mass matrix G (see Hofacker 1963, Marcus 1966) but in general it is always 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Reactions in liquids 24 1 

feasible. Next we expand the liquid potential and the solvent-solute interaction in a 
Taylor series about some minimum configuration point. (The potential along the 
reaction coordinate is unaffected by this process.) The resulting force constants matrix 
F has three kinds of coupling: internal to the solute, solvent-solute and solvent-solvent. 
A normal mode analysis is then performed only on the solvent-solvent modes. 
The outcome of all these transformations is the following: the potential along the 
reaction coordinate is unaltered, it is coupled to all the solvent normal modes via 
potential (and possibly also kinetic) coupling and the latter are diagonal. The result is 
a reaction path Hamiltonian for the supramolecule. A special case of this Hamiltonian, 
when we neglect all modes of the solute except for the reaction coordinate q, is 
sometimes referred to as the Caldeira-Leggett (1983a, b) Hamiltonian and it has often 
been invoked in the calculation of the TST rate constant in solution. It describes a single 
reactive solute coordinate (i.e. q)  that is bilinearly coupled to N harmonic oscillators 
that correspond to the liquid bath modes. This mechanical Hamiltonian can be easily 
recast as a Langevin equation (or GLE for the case of a friction term with memory of 
the previous history of the system) for the motion along q. The Caldeira-Leggett 
Hamiltonian assumes that the N normal modes of the bath are stable. This may not 
necessarily be true in our case and thus we do not exclude the possibility of unstable 
bath modes that are coupled to the reactive system (Stillinger and Weber 1984a, b). 
Using matrix notation the F matrix that describes the Caldeira-Leggett Hamiltonian has 
the general form 

I 

K(q)  is the local force constant along the reaction coordinate, Ai is the coupling strength 
of the ith solvent normal mode, and kii is the force constant of the ith mode of the solvent. 
As noted above, some of these force constants that correspond to unstable modes of 
the solvent would be negative. Any kinetic solvent coupling can be recast as potential 
coupling and included in the 1:s so that the mass matrix G is diagonal, but in general 
G would have a non diagonal structure and all the transformations which we next 
describe would operate on the FG matrix. 

The inherent separation of time-scales, that is characteristic for activated processes 
in weakly coupled solvents, allows the use of a single effective solvent-solute mode 
to mimic the effect of the solvent on the reactive solute at short times. If we rotate the 
coordinate system using an hermitian matrix U we can rewrite equation (45) so that 
the solute is coupled to a single solvent-solute coordinate and the solvent modes are 
no longer uncoupled 

The square matrix x, the vector y, and the number Care functions of the original solvent 
normal modes and of the solvent-solute coupling parameters Li, equation (45). 
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C kii kT2 

k12 k22 k:3 

k23 k33 
T 

’-- k ~ -  i , ~  

The explicit form of the effective solvent-solute force constant k is given by 

k = 2 l;kii A:. (47) 
i I i  

This is in the form of a weighted average, with summation over all the normal modes 
of the solvent. This summation may include a number of unstable solvent modes, but 
as this number is typically small (and it is weighted by the coupling) the value of k is 
positive. The form of the effective force constant exhibits the role of both the magnitude 
of the solvent frequencies and of the spread of these magnitudes. The modes that 
contribute the most to the value of k have simultaneously a higher frequency and a 
stronger coupling. This implies that high-frequency modes of a molecular solvent that 
could be traced back to an internal vibration of the solvent molecule may be neglected, 
as a first approximation, as their coupling to the solute is likely to be small 
(Tucker 1993). 

Whether the solvent mode that couples to the solute is local against normal in 
character depends on the nature of the normal modes of the solvent and on the coupling. 
Even if the normal modes are localized, as would be the case in a monoatomic solvent 
for example, if a few of them contribute to k,  the effective mode would be delocalized 
over the whole of the solvent. The extent of delocalization would depend on the spread 
in frequencies (and their corresponding coupling) that have a major contribution to k.  
As the frequency spectrum of monoatomic liquids is rather narrow (Seeley and Keyes 
1989, Wan and Watt 1994), the effective solvent-solute force constant is expected to 
be more localized. The mass of the solvent-solute coordinate is given by a similar 
weighted average and using the same notation the strength -of the solvent-solute 
coupling, C, is given by 

(49) 

and it would describe a sequential hierarchy of interactions in which each mode is 
directly coupled only to its nearest neighbours via the coupling terms kj , j -  and kj,j + 
and only indirectly coupled to all the other modes. The solute is coupled to a 
solvent-solute mode which is next coupled to a solvent mode etc. This hierarchy of 
interactions agrees with our physical intuition which views the system as a solute 
particle coupled to its first solvation shell which is then coupled to a second shell etc. 

Unlike the effective mass or force constant, the value, C, of the coupling increases with 
the number of solvent modes to which the solute is coupled. 

Before proceeding to describe the results of the molecular dynamics (MD) 
simulations and analysing them using a reduced Hamiltonian we note that if we perform 
a series of such rotation transformations the resulting force constants matrix would be 
written in a tridiagonal form 
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(Adelman 1983, 1987, Tarjus and Kivelson 1991). In section 3.2. we derived an 
expression for the TST rate constant that had a similar form, equation (21). The rate 
in solution was shown to reflect the bare solute, its interaction with the solvent shells 
that surround it and the interactions between the different solvent shells. The tridiagonal 
form of the Hamiltonian systematizes these interactions so that a single shell interacts 
with the solute, and single shells of the solvent interact only with their nearest 
(upper and lower) shells. One has to remember that these shells do not necessarily 
correspond to actual successive geometric shells, yet the experimental evidence that the 
dominant part in the solvation process can be attributed to the first solvation shell 
(even for an ionic solute) does support this analogy. 

5.3. Molecular dynamics simulations of activated processes 
One of the first striking and intriguing phenomena observed in molecular dynamics 

simulations of bimolecular atom exchange reactions in rare gas solvents was the absence 
of the solvent cage effect (Benjamin et al. 1990a, b, Bergsma et al. 1986, Li and Wilson 
1990). By cage effect (Frank and Rabinowitch 1934, North 1964, Schroeder and Troe 
1987) we refer to repeated collisions with the solvent first solvation shell that lead to 
recrossings of the bamer and thus to a decrease in the value of the rate constant. 
The high value of the curvature K(q)  of the potential along the reaction coordinate, 
figure 4, will be used below to explain the absence of a cage effect in the molecular 
dynamics simulations of atom-diatom exchange reactions in rare gas solvents. We have 
shown (Ben-Nun and Levine 1992a) that only at very high densities a clear-cut cage 
effect is seen, and that even the details of the gas phase potential are important and many 
trajectories fail to recross the barrier if the isolated gas phase steric and kinematic 
requirements are not satisfied (Benjamin et al. 1990b, Ben-Nun and Levine 1992a), 
figure 5. The onset of caging is found to be abrupt and it takes place at the same density 
that self-caging of the solvent becomes important, figure 6. These are also the densities 
at which, on a longer time-scale, the liquid will seen to be glass-like. (However, at the 
short times of interest to us one cannot distinguish the phase of the solvent as such 
distinctions as gas against liquid against glass are only meaningful at times over which 
diffusion or the absence thereof can be probed.) Rare gas glasses, or rare gas clusters 
(Liu et al. 1993), may therefore provide a useful insight into the dynamical role of the 
solvent in atom exchange reactions. 

The simulations have further shown that the liquid is able to detain the reactants 
(andor products) at the distant foothills of the barrier for long periods and that the 
activation process (or deactivation when looking at the descending products) is 
localized both in time and in position (Wilson and Levine 1988b). An initial fluctuation 
that involves a few solvent atoms, adjacent to the reactants, provides the necessary 
energy to surmount the barrier via a very few hard collisions (Benjamin et al. 1990a, b). 
The activation process takes place a few hundreds of ferntoseconds prior to the barrier 
crossing event and it involves the creation of a hot spot in the liquid (Benjamin et al. 
1990a, Wilson and Levine 1988). 

One should carefully note that we are talking about that subset of trajectories that 
do manage to scale the barrier. For a system initially in thermal equilibrium there is 
a far larger subset of non-reactive trajectories. To show that we can discuss only the 
subset of reactive trajectories it is a convenient to appeal to microscopic reversibility . 
In the present context this implies that any forward motion in time, that is possible, has 
an equally possible motion determined by propagating Hamilton’s equations of motion 
backward in time. Any trajectory that ascends to the barrier has as its counterpart a 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
1
6
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



244 M. Ben-Nun and R. D. Levine 

0-0 
-100 -50 0 50 100 

Time Ifs 

Figure 5. Caging in a dense solvent. Shown are the 'old' and 'new' bond distances against time, 
computed for the 0 + H2 + OH + H reaction. The reactants are surrounded by 125 Ar 
atoms, (the solute-solvent and solvent-solvent interactions are modelled using a painvise 
Lennard-Jones (12,6) potential with a range parameter CT), at a very high reduced density, 
p* = po3 = 1-68. (At a longer time-scale the liquid will become glass like at this density, 
see figure 6.) Caging is evident as the reactants fail to move apart to such distances that 
a solvent atom can separate them. Also shown, as a dashed line, the 0-H-H angle a. 
Despite the repeated close approaches, the reactants fail to cross the barrier when the angle 
CI is not near 180'. Examination of the gas phase LEPS potential energy function (Johnson 
and Winter 1977) shows that the cone of acceptance for the reaction (Levine and Bernstein 
1987) is quite narrow. When the bond-bond angle is 150", the banier height for reaction 
exceeds its value for a collinear approach by over 1 Kcal mol - '. Consistent with the earlier 
work of Benjamin ef al. (1 990>, it is the cone of acceptance for the bare gas phase potential 
that often determines the steric requirements in solution. 

0 100 200 300 400 500 

Time Ifs 
Figure 6. Variance of the distribution of Ar-Ar interatomi: distances (in units of a', where CT 

is the range parameter of the W potential, o = 3.4A) against time for three reduced 
densities at 300 K. Most simulations are carried out at the critical density p* = ~4~ = 0.83 
when no caging is evident. On the time-scale of interest, i.e., the barrier crossing time 
which is less than lOOfs see figure 5, the behaviour of the solvent at p* = 1.68 is not 
qualitatively different from that at p* = 0.83. If the time axis is scaled by an order of 
magnitude, so that it runs to 5 ps, then the behaviour at p* = 0-83 will be seen to be 
diffusive ((12) f), whereas at p* = 1-68 the rare gas atoms themselves become caged and 
the solvent is glass-like. 
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trajectory that descends from the barrier. This is a result that we will appeal to below. 
It also offers a rationalization of why it takes a few hard collisions to scale the barrier. 
Imagine a fast descent from a steep barrier. The rapidly descending system must, at the 
foothills, run into one or a few solvent atoms (Charutz and Levine 1993). Only if the 
coupling to the solvent is extremely effective (as if the solute is immersed in honey) 
the system will lose much of its energy while it is still descending. In the next section 
we will make this description somewhat more quantitative but the essential point should 
be recognized already here: on the time-scale of the descent from a typical chemical 
barrier, a typical weakly coupled solvent does not respond fast enough. The same 
considerations of microscopic reversibility also identifies the sub-group of those 
trajectories that start as thermal separated reactants and do cross the barrier as the entire 
set of trajectories that begins at the bamer and, when propagated backward in time, 
descends into the reactants region. As a practical point it is much more efficient to 
initiate MD calculations at the barrier top and propagate both forward and backward 
in time. In this way one generates only that subset of trajectories that do scale the barrier 
(Anderson 1973, 1975, Bennett 1977, Keck 1962, 1967). 

5.4. A model for activated barrier crossing in solution 
As argued in section 5.2 the minimal Hamiltonian that is needed to describe the short 

time-scale dynamics needs only to include the motion along the reaction coordinate, 
q. and a single solvent-solute effective coordinate, r. This involves the 2 X 2 sub-matrix 
of the full ( N +  1 )  X ( N +  1) matrix of equation (46). The two-dimensional model 
Hamiltonian 

couples linearly the two coordinates, and the two masses m and p are important in 
determining the dynamics. E(q) is the potential along the reaction coordinate, and q' 
is the position of the barrier. The linear coupling C and the harmontic force constant 
k result from the rotation transformation that we outlined in section 5.2. The former is 
just a sum over all the solvent modes to which the solute is effectively coupled, equation 
(48), while the latter is given by a weighted sum of the solvent force constants, equation 
(47). The coupling term C can also be shown to be related to the friction parameter y 
that governs the overall rate of momentum dissipation in the Langevin equation. 
In practice we use the simulations to determine the force constants via the relevant 
dominant frequencies in the power spectrum. In this model the gas phase perpendicular 
degrees of freedom are ignored and the dissipation of energy from the reaction 
coordinates involves a solvent-solute motion. From the gas phase dynamics (Levine 
and Bernstein 1987, Smith 1980) we know that certain reactions exhibit a strong 
coupling between the reaction coordinate and the one perpendicular to it (F + H2 is but 
one example). The role of this coordinate in the liquid (Charutz and Levine 1993) is 
still an open question. 

Before proceeding to describe the results we wish to define the reduced parameters 
which govern the problem and explain the nature of the adiabatic procedure that will 
be employed. The reduced parameters are measured in units of the solvent-solute 
frequency o, and its mass m. We therefore define a reduced coupling constant, 

y* = (y/w> = (C/k)2(m/p), 
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and a reduced local frequency along the reaction coordinate, 

The strength of the coupling y is scaled by the frequency w. Their ratio measures how 
promptly the solvent can respond to the changes in the solute. The higher the frequency 
the faster is the solvent response to the reactants motion along the reaction path. In the 
weak coupling limit (which is appropriate for inert liquids) y* < 1 and vice versa for 
strongly coupled solvents, such as protic ones capable of creating hydrogen bonds. 
The reduced local frequency p2(q) ,  is the ratio between the reaction coordinate 
frequency and the solvent-solute frequency. Below we shall argue that it is the high 
value of \p2(q)) in and about the barrier to reaction that is the reason for the failure of 
rare gas solvents to effectively cage the reactants in the barrier region. 

In the next section we discuss the adiabatic separation. We will take the adiabatic 
limit to be the one where the solvent is moving fast and is able to follow the motion 
along the reaction coordinate. The opposite is true in the sudden limit, where we have 
a fast motion along the reaction coordinate and a sluggish, slow, one along the 
solvent-solute mode. In both limits the solute can be strongly or weakly coupled to 
the solvent. The different limits (adiabatic, sudden and strong or weak coupling) were 
discussed in detail by van der Zwan and Hynes in their study on the isomerization of 
a dipole in a polar solvent (1982, 1983, 1984). The solvent response time-scale is 
determined not only by the potential. The masses can play a decisive role. A heavy 
solvent-solute particle will not be able to follow a light particle moving along the 
reaction coordinate. Thus the solvent can partially compensate for the disparity in force 
constants in the barrier region by a low inertia, i.e. m < p, but this, by itself does not 
imply a strong coupling between the two motions. 

5.5. Adiabatic separation 
The disparity between the solvent frequency and that of the motion along the 

reaction coordinate suggests that we introduce an adiabatic separation of coordinates. 
This is the exact analogue of the Born-Oppenheimer approximation, in which the fast 
motion is that of the electrons. This fast motion is able to adjust at every point in time 
to the instantaneous positions of the slow(er) coordinate(s). There are however two 
important points of difference. First, it is only near the barrier top that the motion along 
the reaction coordinate is faster than the motion of the solvent. This is no longer true 
at the foothills of the barrier so that non-adiabatic transitions will be important. The 
second, is an important family of reactions (typically, activationless processes, 
Ben-Nun and Levine 1994) for which the opposite is true, namely that in the region 
of the barrier to reaction it is the solvent motion which is faster. As we shall point out, 
one characteristic of this family is the strong solvation of the reactants (which is absent 
in weakly coupled solvents, such as rare gases). 

The adiabatic procedure that we apply is based on a local harmonic approximation 
for estimating the time-scale of the motion along the reaction coordinate. We then 
examine its validity, and in particular its failure, and use it to explain the local energy 
exchange between the solvent and the solute. An adiabatic separation of variables is 
possible when one can neglect the local anharmonicity of the reaction coordinate 
potential. This enables us to diagonalize the coupling between the Y and q motions 
via a scaling and a rotation (the scaling is needed to get a common mass for the 
kinetic energy term). The old coupled diabatic coordinate set is replaced by a new 
mass weighted adiabatic set and the Hamiltonian is written as a sum of uncoupled 
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quadratic terms. When the potential energy is not harmonic a separation of variables 
is, in general, not feasible, and therefore the key step to what follows is the local 
harmonic approximation and the magnitude of the anharmonic terms provides a 
measure to the validity of the separation. The local harmonic approximation is time 
dependent and therefore the adiabatic rotation angle 0, that transforms the original 
diabatic coordinates to the uncoupled adiabatic set, will depend on time. In the adiabatic 
approximation this time dependence is neglected and the kinetic energy is written as 
a sum of square terms using the two adiabatic coordinates Q and R 

(53) 

The potential energy is written in a similar form using the two eigenvalues of the 

m 
2 

T = - (Q' + I?'), (adiabatic approximation). 

reduced local harmonic force constants matrix given by 

where 

= ( cos e w  sin 
- sin 0(q) cos 0(q) . 

The angle 0(q) is that required to diagonalize the Hamiltonian 
2 d y *  

P 2 ( d  + Y* - 1 .  
tan 20(q) = 

(55)  

Note that just as in the corresponding Born-Oppenheimer problem the diagonaliza- 
tion procedure has eliminated the potential coupling at the expense of introducing 
coupling terms in the kinetic energy (Rebentrost I98 1). In the adiabatic approximation 
these terms are neglected and thus the validity of the separation depends on their 
magnitude, and, in particular, on the time dependence of the rotation angle 0. When the 
angle is changing rapidly, the adiabatic separation is no longer valid. 

The efficiency of energy transfer is related to the adiabatic parameter. The latter is 
given by the inverse of the reduced time dependence of 0 (Ben-Nun and Levine 1992b) 

Here f =  cot and o is the solvent-solute vibrational frequency. The motion is adiabatic 
if 8 is small compared to the frequency of the Y and q motions, i.e. when c > 1. In the 
non-adiabatic limit the angle is changing rapidly, 5 < 1, and the impulsive deactivation 
(or activation) process is efficient. 

The minimum energy path for a model reaction is shown in the upper panel of 
figure 7. During most of the motion the adiabatic rotation angle is constant and only 
to the right and to the left of the ridge it is changing rapidly. It is at these dangerous 
regions, where the surface is curving, that the solvent-solute motion will couple to the 
reaction coordinate via a resonant local frequency matching that is shown in the lower 
panel of figure 7. Other than that the motion is in the weak coupling adiabatic limit and 
the separation of variables is defacto exact. The full MD simulations exhibit this local 
frequency matching as a large and rather impulsive energy transfer from the solvent 
to the solute as the latter is ascending the barrier, figure 8. Using time reversibility 
arguments (see previous section) one can equally well view this process as an energy 
transfer from the solute to the solvent as the former is descending from the barrier. The 
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same phenomenon was observed in the model Hamiltonian and is shown for an 
ensemble of model trajectories in figure 9. The motion down (or to) the barrier is 
essentially unperturbed and the reactants (or products) lose (or gain) all the available 
energy. Only when the foothills of the barrier is reached a vibrational non-adiabatic 
impulsive energy transition deactivates (activates) the products (reactants), the 
adiabatic separation breaks down and 8 is changing rapidly. The energy transfer is 
impulsive and it is localized to positions qx along the reaction coordinate where the two 
local frequencies match. For physical values of the friction term these transitions are 
confined to the foothills of the barrier. It is important to note that even though the results 
are for an average of 500 trajectories they all undergo activation (deactivation) at a 
similar time following the departure of the barrier at t = 0. In agreement with the full 
MD simulations the gas phase forces dominate in the barrier region and the solvent is 
actually frozen during the rapid crossing event (Ben-Nun and Levine 1992b, 1993a, 
Bergsma et aZ. 1986, Gertner et aZ. 1987,1989, 1991, van der Zwan and Hynes 1983). 
Typical atom exchange reactions have a barrier with a rather short range, and hence 
the curvature of the potential is quite high. It therefore requires a very special solvent, 

Figure 7. Upper panel: contour plot of the two-dimensional model potential energy surface for 
a symmetric (A + BA) atom exchange reaction. The minimum energy path is indicated by 
the thick line. The equipotential contours are 1-5 Kcal mol- ' apart. Note the short range 
of the barrier region, see figures 3 and 4. The rotation angle 8 is defined as the local tilt 
of the adiabatic reaction coordinate Q with respect to the diabatic q axis, where q is the 
gas phase reaction coordinate. The value of 8 serves as a measure for the solvent 
participation in the motion along the reaction path Q. Asymptotically, and at the barrier, 
8 is constant. (The asymptotic value of 8 corresponds to the solvation of the 
reactants/products and as such it is not zero.) The rapid changes in 0 occur at the foothills 
on either side of the barrier. When passing through such a region the adiabatic Q and R 
motions are no longer uncoupled. One can determine analytically that 8 varies most with 
q at the point where p2(qx) + y* = 1. The position qx where these localized non-adiabatic 
transitions take place is shown in the lower panel for the weak y* < 1 and strong y* > 1 
coupling regimes. 
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CI------a c1 

20 25r---- c1 CI------a 
I I I 

I I I I 

-400 -200 0 200 400 
Time I f s  

Figure 8. The kinetic energy for the relative motion of the reactants (negative times) and of 
the products of the symmetric C1 f Clz atom exchange reaction in liquid Ar against time, 
in fs. The zero of time is when the system is at the saddle point. The temperature is 300 K 
and the reduced density is G* = 0.83, molecular dynamics simulations of Charutz and 
Levine (1 99 1 a). In the gas phase, the relative kinetic energy will be constant both before 
and after the crossing of the barrier. It will only diminish during the very crossing as the 
kinetic energy is being used to surmount the potential hill. This is the case also in solution 
for the period of 2 lOOfs during which the solute is essentially unperturbed. At longer 
times, energy exchange between the solvent and solute @kes place. Before the collision, 
such an exchange is needed in order to activate the thermal reactants. After the 
collision, this exchange dissipates the energy released during the descent from the barrier 
(which is many times ~ B T ) .  As can be seen, this energy transfer is very impulsive. In one 
or two collisions with the solvent atoms the energy dissipation is essentially completed. 
This is more readily understood if we think of the descent from the barrier. As the products 
accelerate down the potential hill they run into a nearly stationary solvent atom, which 
serves to considerably slow them down. A similar behaviour is shown for the model 
Hamiltonian in figure 9. 

with special properties, to be able to rapidly respond to this fast motion (Ben-Nun and 
Levine 1992b, 1993a). Quantitatively, the local ratio of the frequency along the reaction 
coordinate and that of the solvent-solute motion is a measure for that. In the fast solvent 
response regime Ip2(q)1 < 1, but this only happens at the foothills of the potential. In 
the barrier region Ip2(q)1 is high and the solvent is frozen and unable to follow the solute 
motion. The dominance of the gas phase potential energy surface in the barrier region 
was observed even for model S N ~  reactions in water (Gertner et al. 1991). 

It is helpful to think of the angle 8 as a measure to the extent of solvation during 
the course of barrier crossing. The adiabatic approximation which assumes that the 
motion follows the instantaneous value of 8 is thus the one where the solvation is rapidly 
adjusting, i.e., (d8ldt) is negligible as compared to the solvent-solute frequency o. 
One implication of the fact that the extent of solvation is measured by an angle is that 
one can shift 8 by a constant angle 80 such that the reactants are not solvated (i.e.. 8, 
is the value of the old 8 as q + m). Then the barrier in figure 7 would be tilted by an 
angle 80. Subtracting a constant angle does not affect the non-adiabatic coupling which 
depends on (do/&). As is only to be expected, it does affect the rate of crossing of the 
transition state. 
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-300 -200 -100 0 100 200 300 
Time Ifs 

Figure 9. The momentum (upper panel) and non adiabatic coupling dO/dt (lower panel) for an 
ensemble of 500 trajectories, computed for the model Hamiltonian, against time. 
The potential along the reaction coordinate is that for the 0 + HZ reaction and the friction 
y* = 0.7 is realistic for reactions in fluid Ar at 300 K and a reduced density of ph = 0.83. 
The trajectories are initiated at t = 0 from the top of the barrier with a thermal distribution 
in all the other degrees of freedom. Up to the crossing point qx (where dO/dt is extremal) 
the motion gains momentum due to the descent from the barrier. As a result of the 
non-adiabatic transition most of the barrier energy is converted to the I motion. 

5.6. Reaction rate 
For the separable Q and R motions the evaluation of the thermal TST rate constant 

is quite simple: it is a product of one dimensional partition functions 

QR is the partition function for the bound perpendicular adiabatic coordinate R which 
in the classical limit results in a one-dimensional vibrational amplitude 

QR = (ksT/fio1?), (59) 

with an':' being the frequency of the adiabatic R motion (calculated, as appropriate, 
for the reactants or at the TS), kTsTlD is the one-dimensional transition state theory rate 
constant for the unbound Q motion 

(60) kTsTlD = (k~T/h)(2XpkT/h*)'" eXp [ - E(q*) /k~Tl .  

Here E(q*) is the height of the barrier, and the pre-exponential factor is the de Broglie 
wavelength for the translational motion along Q times a frequency factor kBT/h. In the 
absence of any solvent-solute coupling 1 + equals unity and the TST result, equation 
(58), reduces to the one-dimensional limit, equation (60). 

In the reduced description the effect of the solvent is described by a single phase 
space integral, equation (59). The solute particle is confined to an effective 'adiabatic' 
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free volume whose size is determined by summing over all the solvent-solute direct 
interactions, and by a weighted average over the normal modes of the solvent. This 
averaging is similar to the simplified result of cell theory, equation (24), in which the 
effect of the solvent-solvent interactions, and even more of that of the direct 
solvent-solute interactions was modelled via a single configurational integral. There is 
however a difference in the way that we interpret this effective free volume. Cell theory 
considers this volume to be a true physical cell in a geometric space whereas in the 
reduced model (and also in he ‘exact’ many-body result) the effective free volume 
corresponds to a normal mode of vibration and as such it exists in the more general phase 
space. 

Equation (58) is also the reduced analogue of equation (221, in which the rate 
constant was written as a product of two disjoint manifolds of normal modes (one for 
the solvent and one for the solute and solvent-solute local modes), and a single 
correction term for the solvent modes. In the reduced picture the secondary 
solvent-solvent couplings (and hence their corrections) are neglected and account is 
taken only of the first manifold of normal modes that includes the solvated reactant and 
its direct coupling to the solvent via a single effective mode. We note however, that 
this effective mode does include in it all the solvent-solute interactions, see section 5.2. 
Thus the reduced rate constant, equation (58), may be viewed as the short time limit 
of the ‘exact’ many-body result of equation (22). It considers only the direct first-order 
solvent-solute interaction and the longer time-scale solvent-solvent interactions are 
neglected. (The geometric factor of equation (22) does not appear in the reduced 
two-dimensional model which does not include the rotational motion.) 

The ratio of vibrational amplitudes, at the TS and for the reactants, that composes 
the deviations from the ID result can be expressed as a scaling factor. 

= (QPQ~ ”) 

= (A; ”/A$,) (61) 

= (1 + y*)~’2(wmo2A$,)”z. 
The second term in the last line is written so as to emphasize that it is the ratio of force 
constants (or of frequencies) for the motion perpendicular to the reaction coordinate 
without and with the coupling, and the first term is the correction for the solvation of 
the reactants. As argued before, due to the high curvature at the barrier to reaction 
(when compared to a typical solvent-solute interaction) the Q and R motions are 
effectively uncoupled in the barrier region. This suggests that in agreement with the MD 
simulations in which recrossing of the barrier were shown to be negligible at regular 
densities, the TS result, equation (58), provides a realistic estimate of the reaction rate 
so that the second correction factor of equation (58) is roughly one. 

5.7. Caging 
Caging is a short-time phenomenon that takes place when collisions with the solvent 

first solvation shell changes the sign of the momentum of the motion along the reaction 
coordinate. Caging can occur both before and/or after the crossing of the activation 
barrier. In the latter case, the products can remount the potential barrier and they may 
even succeed to recross back into the reactants region. On a longer time-scale, energy 
flows out of (or into) the first solvation shell into (or out of) the bulk of the solvent with 
the result that the reactants are thermalized or, if they attract one another they can also 
be stabilized (Ben-Nun and Levine 1993c, 1994) as a bound pair. This energy relaxation 
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is, in weakly coupled solvents, slower then the vibrational motion in the cage. This 
hierarchy of time-scales was already noted in connection with equation (49) and earlier 
in the factorizations of the type (19). 

In agreement with the full MD results (Ben-Nun and Levine 1992b) caging takes 
place only at such high densities that the friction (or coupling in our mechanical terms) 
is much higher, figures 10 and 11. The trajectory then recrosses the transition state and 
every recrossing is accompanied by a vibrationally non-adiabatic impulsive energy 
transfer at either side of the barrier. These recrossings of the TS reduce the net rate of 
reaction below the rate computed by TST for the crossing of the activation barrier. The 
magnitude of the correction has been discussed in section 3.3. The mechanical crigin 
of the cage is clear when one examines the model potential along the reaction coordinate 
for different values of the coupling. As shown in thelower panel of figure 12, when 
the coupling to the solvent is strong (typically y* > 1 would suffice but the specific value 
does depend on the height of the barrier to reaction) the potential along the reaction path 
has a double well that results in a caged motion, due to the non-adiabatic transitions. 
For a ‘clamped nuclei’ discussion of caging see Patron and Adelman (1991). 

It is interesting to note that for highly asymmetric reactions the criteria for caging 
for the forward reaction (reactants +products) need not necessarily be as the one for 
the reversed reaction (products + reactants). Such an extreme example is shown in the 
upper panel of figure 12 for the exchange reaction F + H2 +FH + H. For the specific 
choice of coupling that is shown (y* =J 2)  the reactants are already caged, as reported 
by Charutz and Levine (1993), yet caging for the products requires a somewhat higher 
value of the coupling to the solvent. When the value of the friction is high, i.e., y* > 1, 
the non-adiabatic transitions can take place closer to the barrier region, where the 
curvature p2(q) is still negative. 

Note that not every trajectory must successfully recross the barrier. As mentioned 
earlier the reactants motion along the barrier is fast and the solvent may not be able to 
reorganize and facilitate the recrossing of the barrier. When the solvent does not have 
the time to adjust and re-optimize the transition state configuration the trajectories which 
are caged at the foothills of the barrier and are reactivated are then reflected from the 
top of the barrier. It is important to note that in the adiabatic limit the solvent-solute 
motion is able to follow the motion along the reaction coordinate, i.e., the r and q 
motions are synchronized. An unfavourable configuration of the transition state is a 
diabatic effect and it reflects a non-equilibrium configuration of the transition state. 
For many years people have looked for the Kramers fall-off regime (Hynes 1985b, 
Kramers 1940, Schroeder and Troe 1987, Tucker et al. 1991) where the rate constant 
is reduced due to frequent recrossings of the barrier. People often talked about a 
diffusive random walk motion along the barrier. The activated problem does not exhibit 
this Brownian motion-like behaviour as the typical barrier is rather high, short ranged 
and with a fairly high curvature. Caging, confined to the very top of the bamer region 
is our analogue of the Kramers over damped regime. It typically happens only when 
the coupling is strong, e.g., y* > 1 (so that the range of the cage is limited, see figure 
12) and it requires that the coupling as measured by y * l [  - p(q)]* is not small. 

5.8. Separation of time-scales 
We study the separation of time-scales using the complementary frequency domain. 

First, we wish to emphasize that this separation is due to a large difference in the 
magnitude of the reduced parameters for the different locations along the reaction 
coordinate and that the different time domains can be discerned both in the full MD 
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Figure 10. Upper panel: a caged trajectory for the 0 + Hz reaction, computed using the model 
Hamiltonian, superposed on the potential energy surface at a high value of the reduced 
friction which corresponds to liquid Ar at a high density, see figure 12. The lower panel 
shows the actual trajectory as a function of time. The repeated crossings of the barrier can 
be identified as due to strong non-adiabatic transitions in the vicinity of the barrier. 

-1 -0.5 0 0.5 1 
Time Ips 

Figure 1 1. A full MD calculation for the 0 + H2 reaction in fluid Ar at a high reduced density 
of p* = 1.68. At this density the solvent atoms themselves are caged, see figure 6. Shown 
are bond distances against time. Note the many attempts, some successful, to recross the 
barrier. This breakdown of the transition state approximation is due to the caging at 
the foothills of the barrier, see figure 12. When such a caging is possible, one should use 
the modification discussed in section 3.3, which takes the cage motion into account. 
Note the time scales here and in figure 5. The caged motion occurs in the sub ps time 
regime. 
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Figure 12. The potential along the reaction coordinate for different values of the coupling to 
the solvent for a symmetric (lower panel) and asymmetric (upper panel) reaction. In both 
panels the dashed line is the potential for the bare reactants i-e., the coupling to the solvent 
is zero. The full lines correspond to the weak (y* = 0.7, thin line) and strong (y* = 1.8, 
thick line) coupling regimes. Lower panel: the symmetric C1+ Clz reaction. The caged 
motion is seen to be a result of the double well potential along the reaction coordinate that 
is present when the coupling to the solvent is large. The motion is then caged and the 
trajectories recross the TS, see figures 10 and 11. (As is only to be expected the specific 
value of y* needed to induce a caged motion would depend on the height of the activation 
barrier to reaction. The larger is y*. the more confining is the cage.) Upper panel: the highly 
asymmetric F + Hz -+ FH + H reaction. As in the lower panel the increased coupling to 
the solvent results in a double well along the reaction path however, due to the high 
asymmetry of this reaction the coupling needed for caging in the forward direction 
(i.e., reactants + products)k higher than for the reverse reaction (products +reactants). 
For this specific example the reversed reaction is caged yet stronger coupling to the solvent 
is required to induce caging in the forward direction. Note how in both panels the volume 
of the cage decreases as the coupling increases thus leading to a higher caging frequency, 
see figure 14 below. 

simulations and in the reduced model. In and about the barrier region it is the bare gas 
phase potential surface that is dominant, see figures 3 and 4. Thus the fast crossing event 
is essentially unperturbed and is similar in many ways to the gas phase problem. 

The energy of a stationary quantum oscillator is well defined and therefore its phase 
is random. For a non-stationary oscillator this need not be true. It can have a spread 
in its energy with the result that its phase is well defined and thus it can be viewed as 
a classical particle oscillating in its well. For an A + BC reaction a classical ensemble 
of outgoing AB product molecules does not have a sharply defined energy and therefore 
its phase may be localized. The vibrational motion of the product molecule is 
perpendicular to the reaction coordinate, and the reduced model ignored it. Unlike the 
familiar continuous wave spectrum, the absorption spectrum of such an ensemble will 
oscillate with a frequency that is similar to the vibrational frequency of the 
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perpendicular degree of freedom (provided that the duration of the light pulse is shorter 
than the probed frequency). If this coherent vibrational motion of the perpendicular 
degree of freedom prevails for a long enough period it can be probed by fast (femto 
second) lasers. Recent ultrafast optical pumping experiments, both in the gas phase 
(Dantus et al. 1989, Khundkar and Zewail 1990, Mokhtari et al. 1990, Nelson and 
Williams 1987, Pollard and Mathies 1992, Rosker et al. 1988, Wise et d. 1987, Zewail 
1991) and in condensed phase (Banin et al. 1992, Banin and Ruhman 1993, Fei et al. 
1992, Scherer et al. 1993, Yan et al. 1992, Zadoyan et al. 1994, Zoval and Apkarian 
1994) demonstrated an experimentally observable coherence in barrier descent 
dynamics. In the present study we regard the atom exchange reaction as a half collision: 
ABC + AB + C. A swarm of classical trajectories is initiated from the saddle point 
region at t = O  with all other coordinates and momenta chosen from a thermal 
distribution. Thus the trajectories are initiated from the saddle but with the most uniform 
distribution in all other degrees of freedom. The electronic absorption spectrum is 
calculated by invoking the Franck-Condon assumption (this assumption is convenient 
but not essential), and the resulting ultraviolet (u.v.) absorption spectrum corresponds 
to a bound to free transition of the AB molecule. Unlike the standard theory (Lax 1952) 
we use a probe field that is localized in time with an envelope centred at time t. The 
result is a time and frequency resolved absorption spectrum Z(o, t).  Different reactions 
at different conditions were studied, here we refer to the symmetric C1+ Cls reaction 
in the gas phase and in liquid Xe (Ben-Nun and Levine 1993b). Both in the gas phase 
and in the liquid the initial evolution of the density did not spread out to uniformly 
sample the available phase space. Rather, over a time interval that can be probed using 
ultra-fast spectroscopy, it remained localized in phase space and hence exhibited a 
coherent motion, figure 13. At a longer time scale ( > 500 fs), the coherence decays 
primarily due to intramolecular anharmonicity and not, as might be expected, due to 
coupling to the solvent. Moreover, the initial caging by the solvent seems to reduce the 
initial dephasing. To study the role of the tight transition state in inducing this coherence 
we have ‘opened it up’ by raising the transition state temperature to the (physically 
non-realistic) value of 3000 K. At this high temperature all other coordinates and 
momenta span a wider range, and as a result there is no coherence in the spectrum. Thus 
the inability of the solvent to compete with the gas phase potential energy forces is 
manifested in the perpendicular degree of freedom: both in the gas and in the liquid the 
action variables (which are conjugated to the phase) are distributed non-uniformly, they 
dephase due to intramolecular anharmonicity which is faster then intermolecular 
solvent dephasing (Oxtoby 198 1). 

At a longer, yet sub-picosecond, time-scale the fairly frequent collisions with 
the liquid atoms detain the products (andor reactants) at the distant foothills of the 
activation barrier (Ben-Nun and Levine 1992b). These repeated collisions with the rare 
gas atoms (lower panel figure 14) generate a collision induced spectrum in the far 
infrared (ix.) region (Ben-Nun and Levine 1993a). (The semiclassical spectrum is 
computed by calculating the Fourier transform of the dipole moment function, and the 
time dependent value of the dipole is calculated from classical MD trajectories 
(Koszykowski et al. 1982, Papoulis 1962).) Whether or not these collisions result in 
re-crossings of the barrier we refer to them as a caged motion as they ‘confine the 
reactants to the region of chemical forces. In other words, we make adistinction between 
the classical cage effect (Hynes 1985b, Kramers 1940) in which the reactants 
(or products) are made to retrace their descent and re-scale the barrier and the more 
general notion of a caged motion. In the latter case the reactants (or products) are 
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Figure 13. The time dependence of the ultrafast probe absorption spectrum at lower (dashed 
line) and higher (solid line) frequencies. The solid (dashed) line corresponds to a vertical 
transition near to the outer (inner) turning point. Upper panel: C13 -+ C12 + C1 in the gas 
phase; dashed line 45000cm-I; full line 75000cm-I. Lower panel: same reaction in 
liquid Xe. Computed using a full MD simulation at a reduced density of 0.83; dashed line 
45 000 cm - '; full line 85 000 cm - I .  As would be expected for a fully coherent motion the 
time dependence of the two spectra is exactly out of phase and the period is essentially 
that of the vibrational motion of C12. 

detained for a measurable duration at the foothills of the barrier. The upper panel of 
figure 14 shows a distinct frequency of the solvent-solute motion that is far lower then 
the frequency of the OH-H or H-H chemical bond. 

The well defined power spectrum of the caged motion also serves to validate our 
conclusion that in weakly coupled solvents, the deactivation of this motion, by energy 
transfer to further removed motions of the solvent, is a slower process. We next turn 
to a different situation where both because of longer-range attractive forces between 
the reactants and due to strong coupling to the solvent, the caged motion is heavily 
damped. 

6. Adionless processes and the role of solvation 
We next proceed to discuss an ion-molecuk activationless recombination process 

in a solvent of structureless atoms. Attention is centred on the dynamics of the motion 
into the polarization well (Adams et al. 1983, Barlow et al. 1986, Ferguson 1974, Lim 
and Brauman 1991, Olmtead and Brauman 1977, Pellerite and Brauman 1980, Rabani 
et al. 1991) and we do not address the crossing of the chemical barrier which lies closer 
in than the polarization well. Hence, the molecular dynamics simulations are aimed to 
mimic a capture process in solution. Here too we will invoke an adiabatic separation 
of variables and examine the validity of simple gas phase models, such as the capture 
model, in solution. 

As in the gas phase the two classes of reactions (activated (Levine and Bernstein 
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Figure 14. Upper panel: A reactive trajectory for the 0 + H2 -+ OH + H reaction in fluid Ar 
at a reduced density of 0.83 and 300 K. The two bond distanced(ful1 line) and approach 
angle a, see insert figure 5, are shown against time. This typical trajectory approaches the 
barrier (and crosses it rapidly) only once. The reactants (products) spend a considerable 
time within a joint solvation shell, at the distant foothills of the activation barrier to 
reaction, due to frequent collisions with the liquid atoms. Lower panel: The power 
spectrum of cos a against frequency. The frequent collisions with the solvent atoms 
generate a collision induced spectrum in the far i.r. region. By restricting the time 
integration of the Fourier transform to positive or negative values only, we identify the 
higher pick at 585 cm- to be due to the motion of the reactants (with respect to the solvent) 
while the lower frequency peaks are due to the relative solvent-products motion. 

1987, Smith 1980) and activationless (Bagchi and Fleming 1990, Ben-Amotz and 
Harris 1987, Clary 1990, Keirstead et al. 1991)) serve as opposite models to simple 
bimolecular reactions. The first category, which we already discussed, will typically 
involve a reaction between neutral atoms or molecules whereas the second category, 
to which we next refer, includes radical recombination, ion-molecule reactions and 
exchange reactions between polar reactants (Schroeder and Troe 1987, Bagchi 1989). 
As we move from the activated problem to the activationless one we will show that, 
at the bottleneck to reaction, the nature of forces changes and even reverses. The reason 
is that in the absence of an intrinsic barrier to recombination, the only barrier to reaction, 
in the gas phase, is due to the rotational motion of the approaching reactants (Levine 
and Bernstein 1987). (The recombination of two methyl radicals (Eyring et al. 1936, 
Goring 1938) is but one example of a reaction with a rotational barrier.) The position 
of this rotational barrier is at a large ion-molecule separation (Levine and Bernstein 
1987, Smith 1980) (when measured in units of the ion-molecule interaction length-scale 
0). At this large separation the reactants are attracted only by their mutual long-range 
attractive interaction whereas the ion is solvated by the liquid first solvation shell. There 
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258 M .  Ben-Nun and R. D. Levine 

are two unrelated, different, reasons why the activationless process is so different from 
the previous problem: (1) the reactants’ long-range interaction is physical and is 
therefore not comparable to a chemical interaction, and (2) the interaction with the 
solvent is different. We have an ion or a polar reactant which at room temperature is 
typically bound to one (or more) liquid atoms and the two are vibrating (and possibly 
rotating) around their equilibrium distance. This simple observation is shown in 
figure 15 where we plot the polarization potential of the reaction coordinate along with 
its Iocal frequency measured in units of the ion-solvent equilibrium frequency, (Wm). 
In and about the rotational barrier region the solvent is moving faster than the slowly 
diffusing reactants (in our notation this is noted by p2(q)  < 1). Only to the left of the 
rotational bamer near the equilibrium distance do the reactants feel a strong chemical 
attraction. This disparity in forces governs the different major aspects of the 
recombination dynamics which we next describe. 

Molecular dynamics trajectories of a model ion-structureless molecule recombina- 
tion in an atomic solvent show a strong ion-solvent relative interaction (Ben-Nun and 
Levine 1993c, 1994). This strong attraction is manifested in the time dependence of the 
ion-molecule rotational quantum number. In contrast to the gas phase problem where 
it is constant (Levine and Bernstein 1987) here it is changing rapidly and with a 
frequency that is similar to the ion-solvent vibrational frequency, figure 16. This 
correlation may be checked by comparing the frequency of the Fourier transform of the 
ion-solvent distance to that of the ion-molecule rotational quantum number, or by 
running the dynamics with but one liquid atom and noting that when the latter is not 
bound to the ion the ion-molecule rotational quantum number is essentially constant 
(Ben-Nun and Levine 1994). The large alteration of the ion-react& molecule rotational 
quantum numberj suggests that one ought to re-examine the usual procedures which 
are ordinarily invoked when calculating a thermal rate constant: thermal averaging of 
thej  dependent rates (Borkovec and Berne 1986, Straub et al. 1986) or using a single 
rate calculated using a j averaged effective potential (Sceats 1986). (The effective 
potential is a sum of the attractive potential energy and the repulsive kinetic energy term 
associated with the rotation of the relative motion of the reactants (Levine and Bernstein 
1987).) 

The MD simulations have further pointed to the possible formation of a 
‘solvent-separated’ ion-pair (Ciccotti el al. 1990, Rey and Gukdia 1992, Winstein 
et al. 1954). At a large ion-molecule relative separation a solvent ‘atom’ can fit in 
between the two reactants. The formation of an ion-molecule pair is then delayed and 
it requires the reorganization of the solvent. As the ion-solvent separation decreases, 
two interactions are increasing and they both ‘push’ the solvent atom to the other side 
of the ion: the ion-molecule uttraction is increasing and the molecule-solvent atom 
repulsion is increasing. Thus at a large ion-molecule distance the energetically stable 
configuration is ion-solvent-molecule and as the ion-molecule separation continues to 
decrease the most stable configuration becomes ion-molecule-solvent. The formation 
of a ‘solvent-separated’ ion pair was observed in molecular dynamics simulations of 
recombination dynamics of Br; in clusters of Ar and CO;? by Amar and Perara (1989, 
1991). Experimentally, Lineberger et al. (Papanikolas et al. 1991, 1992) indicated that 
the formation of a ‘solvent-separated’ ion pair is actually feasible. In addition, once it 
is formed the ion-molecule pair can be stabilized by collisions with the solvent. In the 
gas phase an attempted recombination process of two structureless reactants ends in 
their final ultimate separation, due to conservation of energy. Hence, one needs a 
chaperon or a third atom for a successful capture (Smith 1980). The presence of the 
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Reactions in liquids 259 

Figure 15. The ion-molecule polarization potential E(q) (solid line) and its second derivative 
(dashed line) plotted in reduced units against the reaction coordinate q. E is the 
ion-molecule well depth and w is the frequency of the ion-solvent motion. The right 
ordinate shows p2(q). p2(q) = [K(q)/k][m3(ml + rn2)/ml(rn2 + md]. At large q values the 
force constant k for the solvation of the ion is larger than K(q). Unlike the case for activated 
reactions, see figure 4, at and about the barrier in the effective potential 
( = E(q) + centrifugal term), p2(q) < 1. The difference is due to the location of the barrier 
in the effective potential which occurs for (q/o) > 1. 

0 
0 1 2 3 4 5 6 7 8  

Time Ips 

Figure 16. A typical molecular dynamics trajectory for the recombination of a C1- ion and a 
structureless CH3CI molecule in liquid Ar. Lower panel: the ion-molecule relative 
separation against time in ps. Note the capture into the polarization well at longer times, 
due to efficient stabilization of the ion pair by the solvent. Upper panel: the angular 
momentumj (in units of h) of the approach motion against time. The gas phase capture 
model assumes thatj is constant during the crossing of the centrifugal barrier. Here, due 
to the relative motion of the solvent with respect to the reactants (and particularly with 
respect to the C1- ion), j is constantly changing. 
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liquid provides this channel for energy dissipation, if energy transfer to the ion-solvent 
mode is efficient. Below we will use an adiabatic separation of variables to identify the 
point in time that gives the major contribution to this energy transfer. 

6.1. Model. 
The activationless model Hamiltonian (Ben-Nun and Levine 1993c) is similar in 

spirit to the activated one, yet there are some major differences. First, the present 
problem has an additional degree of freedom which was observed to be important in 
the full dynamics. Second, since we use a Cartesian coordinate system there is a kinetic 
coupling term, the last term in equation (63) below. Third, we use a nonlinear space 
dependent coupling term (Haynes etal. 1993, Krishanetal. 1992a, b, Strauss etal. 1993, 
Voth 1992). Depending on the masses involved, the kinetic coupling term can be 
significant and below we show that, for our choice of masses, it is the kinetic coupling 
term that plays the major role and not the potential coupling. However, the nonlinear 
potential energy coupling term is essential to our model as it mimics the reorganization 
process of the solvent. 

The relevant coordinates in the recombination process are the ion-solvent 
coordinate r and the ion-structureless molecule relative coordinate q. Using a vector 
notation for both r and q, the angle CI between them does not show explicitly. Thus the 
three dimensional model Hamiltonian 

H = T +  V(r,q), (62) 

where 

has two coupling terms. In equation (63) mi, m2 and m3 are the ion, molecule, and solvent 
atom masses, respectively and M is the sum of masses. The long-range part of the 
polarization potential along the reaction coordinate E(q) has a q - 4  dependence, k is an 
ion-solvent harmonic force constant (estimated using the same methods described in 
the activated problem), and re is the ion-solvent equilibrium distance (estimated also 
from the full MD simulations). The potential coupling term C(q) is introduced to mimic 
the solvent reorganization process and its functional form is determined as follows. 
At a very large ion-molecule separation the ion and solvent are vibrating and rotating 
freely (in the solvent this rotation may be hindered by the other neighbouring solvent 
atoms), the coupling to the reaction coordinate is then only due to kinetic coupling 
(last term in equation (63)). As the ion-molecule relative separation decreases the 
potential coupling changes from zero. Its sign is determined by the requirement that at 
a large separation the stable configuration is molecule-solvent atom-ion. A further 
decrease in the relative separation results in a change of sign of C(q) that enables the 
reorganization of the solvent. The position where the sign changes is estimated from 
a fit to the three-body potential used in the MD simulations, and the length scale is 
chosen to ensure a smooth but rather abrupt change of sign. 

Figure 17 shows an example of a model Hamiltonian trajectory. There are two 
important points to note in this trajectory. One is that in agreement with the full MD 
simulations (figure 16), the angular momentum, j ,  of the ion-molecule relative 
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Figure 17. A model Hamiltonian trajectory for a chaperoned encounter between a C1- ion and 
a CH3CI molecule. A single Ar atom is solvating the ion. Bottom panel: the ion-molecule 
(q) and ion-solvent ( r )  distances against time in ps. Middle panel: the orientation of the 
chaperon Ar with respect to the ion-molecule axis. Initially the Ar atom was in the way 
as the stable configuration is ion-solvent atom-molecule. As the ion-molecule relative 
separation decreases the solvent atom rotates to the other side of the ion and thus enables 
the recombination to proceed. Upper panel: the angular momentumj (in units of f i )  of the 
ion-molecule relative motion. In agreement with the full MD simulations, see figure 15, 
the angular momentum is changing with a frequency that is evidently similar to the 
frequency of the ion-solvent atom relative motion. 

separation is changing rapidly and with a frequency that is evidently similar to the 
ion-solvent vibrational frequency. The second point is the formation of a ‘solvent- 
separated’ ion-pair which is followed by a solvent reorganization process. At t = 0 the 
chaperon solvent atom is placed randomly around the ion and the stable configuration 
is ion-solvent atom-molecule. As the ion-molecule relative separation decreases the 
solvent atom is rotating to the other side of the ion and thus enables the recombination 
to proceed. Note that despite the extensive energy exchange the solvent did not drain 
enough energy from the reaction coordinate and the trajectory results in the final 
separation of the structures reactants. 

6.2. Ion-pair stabilization 
It is often the case, both in the full MD and in the model, that the newly formed 

species undergoes an efficient vibrational stabilization process (Ben-Nun and Levine 
1993c, 1994). This is in contrast to the gas phase where the only possibility of vibrational 
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deactivation of two structureless particles is that of an inefficient radiative decay. The 
presence of the liquid, or of any other additional degree of freedom, opens a new channel 
for energy dissipation. Experimentally the vibrational relaxation is studied by 
selectively exciting a vibrational level using i.r. absorption or stimulated Raman 
scattering and then studying the vibrational relaxation by monitoring the recovery of 
the i.r. active transitions, by time and frequency resolved fluorescence or by direct 
optical detection (Chesnoy and Gale 1988, Graener el al. 1989, Harris et al. 1990, 
Laubereau and Kaiser 1978, Smith and Harris 1990). When there can be a frequency 
matching between the solvation coordinate and the solute vibrational coordinate the 
reported (Brown et al. 1988) time-scales range from 1 to lOOps, depending on the 
strength of the solvent-solute interaction. Molecular dynamics simulations show 
similar results (Benjamin and Whitnell 1993, Staib and Hynes 1993). 

The present study of the deactivation process is motivated by the mechanical 
description of the system, i.e., the Hamiltonian in equation (62). An adiabatic separation 
of variables is used to study the efficient V-T energy transfer. The adiabatic separation 
is similar to the one used in the activated problem, the only difference here is that both 
the kinetic and the potential energy have to be diagonalized simultaneously. Just as in 
the former problem, the procedure is based on a local harmonic approximation of the 
polarization potential along the ion-molecule relative separation coordinate. Once the 
potential energy is written in a quadratic form we use the FG procedure of molecular 
spectroscopy (Wilson el al. 1955) and simultaneously diagonalize both the kinetic and 
the potential energy. The end result is a set of new adiabatic vectors Q and R. The new 
vectors are a linear combination of the old ones. Just as in the former problem the exact 
dynamics need not necessariiy be in the adiabatic limit. In particular we will examine 
the breakdown of this separation. The sticky collision which is shown in figure 18 
demonstrates the efficient coupling between the two modes that leads to the formation 
of a rather long lived complex. Note that as emphasized before, most of the motion is 
in the adiabatic limit. This is indicated by a constant value of the adiabatic angular 
momentum (see next section) and the adiabatic rotation angle 8. The sudden changes 
in 8 are localized in time. They occur while the reactants are inside their well and 
correspond to energy exchange between r and q. The repeated collisions enhance the 
V-T energy transfer and are hence analogous to the role of van der Waals bound species 
(Ewing 1978) in gas phase V-7 energy transfer. Thus the ion-solvent first solvation 
shell provides the necessary coordinate that can effectively couple to the vibrational 
motion of the highly excited ion-molecule pair and stabilize it for long periods. 

6.3. Constants of motion 
The possibility of a reduced description of liquid phase dynamics and in particular 

the idea of extending gas phase models to solution has been the aim of much theoretical 
research. For example, Wilson et al. (Li and Wilson 1990) examined the validity of 
Polanyi’s rule in solution, i.e., the correlation between the location of the barrier along 
the reaction coordinate and the energy requirements and/or disposal in the reaction. 
They found that for the symmetric C1-t Cl2 activated exchange reaction, in a rare gas 
solvent, there is a time duration of ? l00fs around the barrier for which the gas and 
liquid phase energy partitioning is similar. Just as in the gas phase problem, an early 
barrier along the reaction coordinate leads to a preferential energy release to the 
vibrational motion of the product molecule. Thus for the case of an activated reaction 
in a weakly coupled solvent there is a short, yet experimentally detectable, time duration 
(confined to the barrier region) for which the gas and liquid phase dynamics are similar. 
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Adiabatic rotation 

h s 

0- 

Time ips 
0 1 2 3 4 5 6 7  

Figure 18. A model trajectory for the activationless recombination reaction. Lower panel: as 
in figure 17 the two bond distances against time. Middle panel: the adiabatic rotation angle 
8. The efficient energy transfer to the solvation mode results in the formation of a stable 
adduct. (Figure 16 shows a similar phenomenon for the full MD simulations.) Upper panel: 
the diabatic (dashed line) and adiabatic (solid line) angular momentum (in units of f i )  of 
the ion-molecule separation q against time. The angular momentum of the adiabatic 
reaction coordinate Q is essentially constant during the crossing of the effective barrier 
to reaction whereas, in agreement with the full MD results (figure 16) the diabatic 
angular momentumj is constantly changing. The constant value of the adiabatic angular 
momentum enables us to extend the gas-phase capture model to solution. 

Charutz and Levine (1991a, b, 1992) have discussed the more general problem of how 
to dress the gas phase variables (i.e., to solvate them) such that the new dressed 
variables satisfy the gas phase equations of motion. Below we discuss a more 
approximate approach where the variables are only useful in the adiabatic limit. We 
illustrate the idea by a specific application, that of deriving a capture model for 
activationless reactions. 

The capture model (Levine and Bernstein 1987, Clary 1990, Smith 1980, Smith 
et al. 1989) has been used for many years to estimate the gas, phase reaction rate or 
capture cross section. The model is based on the notion of an effective potential which 
is the sum of the attractive potential energy and the repulsive kinetic energy term 
associated with the rotation of the relative motion of the reactants. (The repulsive kinetic 
energy term keeps the two colliding particles apart.) Thus at large separations the 
effective potential has a barrier and its position and height are energy dependent (it shifts 
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264 M. Ben-Nun and R. D. Levine 

closer in for higher collision energies). By adding the centrifugal term to the long-range 
attractive potential (the short-range repulsion is neglected) the position and height of 
the effective potential is evaluated and one assumes that if the particles cross this point 
reaction proceeds with a unit probability. This rather naive model oversimplifies the 
problem by neglecting many effects (such as steric requirements (Jensen 1992, Levine 
and Bernstein 1988, Turulski and Niedzielsky 1988, Rabani et al. 1991), the role of 
reactants vibrational excitation (Hase et al. 1992, Troe 1987,1989, Tucker and Truhlar 
1989, Vande and Hase 1990) etc.), yet it is able to predict trends and systematics. 
For example, for ion-molecule reactions (an rP4  attractive potential) it is found that, 
unlike the case of an activated reaction, the reaction cross-section decreases as the 
relative kinetic energy increases and the chemical rate constant is temperature 
independent (Gioumousis and Stevenson 1958). To be able to apply the capture model 
in solution an effective constant angular momentum has to be found (Ben-Nun and 
Levine 1994). One can then predict the final outcome of a trajectory just by looking 
at the initial constant value of the relative adiabatic angular momentum. 

By applying the adiabatic procedure both the kinetic and the potential energies are 
separable and we can then define a constant angular momenta along the two adiabatic 
coordinates Q and R 

Note that equation (65) is correct only in the adiabatic limit, i.e., when the time 
dependence of the rotations that diagonalize the Hamiltonian of equation (62) is 
neglected. The upper panel in figure 18 shows that the separation of variables is exact 
for most of the motion and in particular for the region of interest, i.e., about the 
centrifugal barrier to reaction. Only after the particles have crossed the barrier and have 
approached each other to well within the range of their chemical forces does the 
adiabatic separation break down. The breakdown of the adiabatic separation is confined 
to the region of chemical interaction and it is manifested by the rapid changes of the 
adiabatic angular momentum. The outcome of a trajectory can now be predicted by 
examining the initial value of the adiabatic angular momentum along the adiabatic 
reaction coordinate. If this value is too large the colliding particles do not cross the 
centrifugal barrier to reaction, and the trajectory is considered to be non-reactive. While 
the diabatic angular momentum does not give us any indication about the final outcome 
of a trajectory as it is changing rapidly from practically zero to very high values with 
a frequency that is determined, to a large extent, by the ion-solvent vibrational motion 
(middle panel of figure 18), there is an effective adiabatic ‘solution’ angular momentum 
that one can use (already at t = 0 when the trajectory is initiated) to predict the end result. 
It is important to note that the set of adiabatic coordinates is not the result of thermal 
averaging which is often employed in the calculation of a rate constant for activationless 
reactions in solution. Rather, the character of the adiabatic uncoupled set is complicated 
and it basically involves a substantial mixing between the two original modes. The 
extent of mixing is determined by the magnitude of the coupling terms, both kinetic 
and potential. 

Before concluding we wish to address the nature and magnitude of the different 
coupling terms. The extent of kinetic coupling (last term of equation (63)) is determined 
by the masses and for our choice of similar masses it is relatively large. The potential 
coupling term, C(q), is relatively small (if it is too large the potential becomes more 
spherical about the centre of mass and the rotation is frozen) but it plays a major role 
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in our system as it mimics the reorganization of the solvent. To understand the 
role of the kinetic coupling it is useful to think of our system as a triatomic molecule, 
where heavy atom blocking is a known phenomenon (Lederman et al. 1989, Uzer and 
Hynes 1989). When the mass of the central atom (the ion in our model) is increased 
the degree of mixing between the two modes decreases (i.e., lower coupling) and the 
use of local modes rather than normal modes is physically more correct. This is true 
for both the model and the MD simulations. When the mass of the ion increases, the 
coupling of the ion-molecule vibrational motion to the reaction coordinate is less 
effective. The small value of the potential energy coupling term need not surprise us 
as it is well known that for triatomic molecules the experimental results are often 
recovered quite accurately even if this term is neglected and only the kinetic coupling 
term is taken into account (Child and Halonen 1985, Henry 1977, Jaffe and Brumer 
1980). 

7. Concluding remarks 
This review discussed aspects of our current understanding of both the kinetics and 

the dynamics of reactions in solution. By kinetics we mean the study of the rates of 
chemical reactions starting with thermal reactants. Unlike the situation in the gas phase, 
where one can select the initial state of the reactants before the collision, this is far less 
practical in solution. On the other hand, what one can change in solution chemistry, but 
not in the gas phase, is the nature of the solvent. For both these reasons, the kinetics 
of reactions is the level at which the theory can meet with much of the available 
experiments. It is precisely because it is not so readily possible to probe the dynamics 
that we need to rely more on the theory. A typical example is any activated chemical 
reaction. In the gas phase, it is necessary that the well separated reactants have sufficient 
energy to cross the barrier. Otherwise, they will simply fail to react. Not so in solution. 
The well separated reactants, even if strongly coupled to the solvent, are thermal. 
Therefore, as the reactants approach one another, the solvent must reorganize so as to 
provide the energy required to climb the barrier. If there is a surface of no return 
separating the reactants and products, then transition state theory tells us that the 
dynamical details of how the solvent does this do not matter, as far as the overall rate 
is concerned. Still, it is of interest to know what is the mechanism by which the required 
activation takes place. Is it a slow Brownian-like accumulation of energy or is it a rather 
impulsive event? In section 5 we suggested that in weakly coupled solvents it is often 
the latter and that a solvent-solute coupling of almost chemical strength is required for 
the former. Photochemical initiation of reactions, (particularly unimolecular ones 
(Whitnell et al. 1992)), in solution, clusters (Bormann et aZ.1993, Fei et al. 1992, 
Liu et al. 1993, Potter et aZ. 1992) and glasses allows for a real time probing and will 
be soon providing information that can directly test out understanding of the dynamics 
of reactions in liquids. 

Even at the level of a kinetic description, our understanding is less complete than 
one might wish. One can always regard the reactants plus a large chunk of the solvent 
an one supramolecule and compute for it a reaction path leading from reactants to 
products. Our understanding of potential energy surfaces of many atom systems 
(e.g., Berry 199 1, 1994, Onuchic and Wolynes 1993) leads one to expect that there can 
be more than one barrier along it. Simulations of reactive events are clearly one 
way to learn more about what really takes place. Another is the computation of the 
potential of mean force along possible reaction paths, e.g., Jorgensen (1989). This 
potential determines the equilibrium rate of the crossing of a dividing surface at any 
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given point. Of course, at an arbitrary point along the reaction path, it is not the case 
that all trajectories that cross the dividing surface originated from the reactants. Nor will 
they all proceed to form products. If there are distinct barriers along the way then the 
analysis of section 3.3. shows how one can combine such crossing rates so as to obtain 
the net reaction rate. 

In transition state theory we take it that there is one location where the crossing is 
rate determining. Even then things have not simplified enough. For what we really want 
are answers like what is the role of the solvent in determining the reaction rate. But the 
theory is cast in terms of the partition function of the supramolecule evaluated at 
the transition state configuration. An exact answer is to evaluate the potential of mean 
force at that location. Typically this is a numerically intensive task and so does not 
provide ready insight. There are essentially three practical alternatives. The first is to 
relate the partition function to other thermodynamic quantities for which one can 
develop an intuition (in the case of the transition state) or which can be measured 
(in the case of the reactants). The other two possible routes require a factorization of 
the partition function. Such a factorization necessarily implies additivity of the relevant 
energies and so, since the solvent and solute interact, this means that it is the properties 
of both solvent and solute that have to jointly enter the final answer. The two alternatives 
correspond to the two possible routes available for computing a partition function. One 
is the evaluation of a phase space integral or, in quantum mechanics, as a sum over 
states. The integrand (or summand) is the Boltzmann factor. If the energy can be 
expressed as a sum of terms, the Boltzmann factor factorizes and so does the partition 
function. This route is best when it is possible to account for the solvent-solute coupling 
as an additional term in the energy which is not dependent on either the solvent or 
the solute coordinates. The free volume correction, sections 2.1. and 3.1 ., provides the 
simplest illustration of this approach. The other alternative is to factorize the partition 
function as a momentum integral times a coordinate (or configurational) integral. The 
Boltzmann factor in the configuration integral is given in terms of the potential energy 
of the system. Hence this alternative is more practical if a good understanding of the 
solvent-solute coupling is available. What one now has to implement is a sequential 
factorization of the configurational integral. The use of local coordinates for doing this 
has been discussed in section 2.2. 

Molecular dynamics simulations for reactions in solution are currently limited 
primarily by our very incomplete understanding of potentials in many-atom systems. 
For an assumed potential one can quite readily integrate the equations of motion over 
the time interval required for a barrier ascent and descent, retaining a realistic number 
of solvent shells about the reactants, even for a solvent with internal structure. 
The reason why this is practical is the rather short-time interval that is involved 
(see figure 6). This is also the reason why direct reaction dynamics will be the same 
in clusters, liquids and glasses. (The one advantage of either the clusters or the glass 
is that they provide for the possibility of a non-equilibrium environment for the 
reactants.) The study of the dynamics is less amenable to a direct computational 
approach if long-term caging takes place. One can then however use the discussion of 
section 3.3. to limit the actual dynamical computation to the process of barrier crossing 
itself. Methods for treating systems with different time-scales are also being developed 
(Tuckerman et al. 1992). Much current research interest is focused on processes which 
take place on more than one potential energy surface (Makarov and Makri 1993, 
Wolynes 1987). 

As in the gas phase (Levine and Bernstein 1987) the computational study of 
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dynamics can be complemented by the introduction of more intuitive models. In this 
review we have emphasized a molecular picture rather than incorporating the role of 
the solvent in frictional terms. In principle this is a matter of convenience but in practice 
the two alternatives tend to emphasize different aspects. The very finite number of 
activating/deactivating collisions which take place at the foothills of the barrier to 
reaction (section 3.3.), the separation of time-scales that one can often identify (section 
5.8.), the understanding of steric aspects (Benjamin et al. 1990b, Ben-Nun and Levine 
1992a) are all readily cast in mechanical terms and thereby fall within the same 
framework which has been successful in the gas phase and is currently being applied 
to reactions in clusters and in solution. 
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